
- •Основная задача динамики Основная задача динамики
- •Инерциальная систем координат связанная с Землёй
- •Единство понятия массы
- •Единицы массы
- •Закон сохранения
- •Равнодействующая
- •Понятие массы
- •«Школьное» определение импульса
- •Обобщённый импульс в аналитической механике
- •Формальное определение импульса
- •Импульс в квантовой механике Формальное определение
- •Определение через волны де Бройля
- •Заключение
- •Второй закон Ньютона
- •Другая формулировка Второго закона Ньютона . Импульс материальной точки
- •Третий закон Ньютона
- •Историческая формулировка
- •Кинематическая вязкость
- •Ньютоновские и неньютоновские жидкости
- •Вязкость аморфных материалов
- •Сила вязкого трения
- •Закон Гука
- •Нелинейные деформации
- •Пластические деформации
- •Обобщённый закон Гука
- •Законы Ньютона в неинерциальных системах отсчета
- •Состояние отсутствия веса (невесомость) наступает при удалении тела от притягивающего объекта, либо когда тело находится в свободном падении, то есть . Вес и масса
- •Интересные факты
- •Вес в авиации
- •Создание единой теории фундаментальных взаимодействий
- •Закон сохранения импульса. Центр инерции. Движение центра инерции. Связь закона сохранения импульса с принципом относительности Галилея
- •Принцип относительности Галилея и закон сохранения импульса
- •Обеспечивает передвижение ракетного двигателя и связанного с ним аппарата в сторону, противоположную направлению реактивной струи Формула при отсутствии внешних сил[2]
- •Доказательство
- •Уравнение Мещерского[2]
- •Формула Циолковского[3]
- •Момент импульса замкнутой системы сохраняется. Момент импульса в классической механике
- •Определение
- •Вычисление момента
- •Сохранение углового момента
- •Момент импульса в электродинамике
- •Момент импульса в квантовой механике Оператор момента
- •Симметрия вращения
- •Вычисление момента импульса
- •Предыстория
- •Единицы
- •Специальные случаи Формула момента рычага
- •Два тела с небольшой разницей в массах движущиеся по круговым орбитам вокруг общего центра масс. Этот специфический тип орбиты подобен системе Плутон - Харон. Постановка задачи
- •Движение центра масс (первая задача)
- •Движения вектора смещения (вторая задача)
- •Решение задачи двух тел
- •Движение двух тел в плоскости
- •Общее решение для силы, зависящей от расстояния
- •Применение
- •Задача двух тел в ото
- •Первый закон Кеплера (закон эллипсов)
- •Второй закон Кеплера (закон площадей)
- •Третий закон Кеплера (гармонический закон)
- •Работа в термодинамике
- •Работа силы в теоретической механике
- •Определение
- •Размерность и единицы
- •Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы. Единицы измерения
- •Мощность в механике
- •Электрическая мощность
- •Приборы для измерения мощности
Состояние отсутствия веса (невесомость) наступает при удалении тела от притягивающего объекта, либо когда тело находится в свободном падении, то есть . Вес и масса
В современной науке вес и масса — разные понятия. Вместе с тем о разнице веса и массы узнали относительно недавно, и во многих повседневных ситуациях слово «вес» продолжает использоваться, когда фактически речь идет о «массе». Например, мы говорим, что какой-то объект «весит один килограмм», несмотря на то, что килограмм представляет собой единицу массы. Кроме того, термин «вес» в значении «масса» традиционно используется в цикле наук о человеке — в сочетании «вес тела человека»[1][2][3].
Интересные факты
Исходя из физического смысла веса
детская задача: «Что больше весит:
килограмм
свинца или килограмм воды?» имеет
конкретное решение.
,
а поскольку сила
Архимеда пропорциональна объему
тела, то ответом на эту задачку будет
следующее утверждение: из двух тел с
одинаковой массой вес больше у тела с
меньшим объемом, т.е. у свинца.
Крайним случаем такой задачи является воздушный шар: после сбрасывания последнего мешка перед взлётом вес становится строго равным 0, после чего сила Архимеда становится больше силы тяжести и взаимодействие шара с опорой — поверхностью земли — исчезает.
Вес в авиации
В авиации вес рассматривают как силу, противостоящую подъемной силе. Эта сила действует вдоль мысленной линии, которая соединяет центр масс самолёта и центр Земли. Вес изменяется в процессе полета с выработкой топлива (а также выпуском ракет и сбросом бомб, выбросом десанта). Также при выполнении различных маневров самолет испытывает перегрузки и увеличивает вес, которому должна противостоять подъемная сила. Чтобы сохранить баланс между весом и подъемной силой во время маневра и не потерять высоту, пилот должен увеличить подъемную силу, увеличив угол атаки и/или тягу двигателей.
Гравитация
Гравитация (сила тяготения) —
универсальное взаимодействие между
любыми видами материи.
В рамках классической
механики описывается законом
всемирного тяготения,
сформулированным Исааком
Ньютоном в его труде «Математические
начала натуральной философии».
Ньютон получил величину ускорения, с
которым Луна
движется вокруг Земли,
положив при расчете, что сила тяготения
убывает обратно
пропорционально квадрату
расстояния от тяготеющего тела. Кроме
этого, им же было установлено, что
ускорение, обусловленное притяжением
одного тела другим, пропорционально
произведению масс этих тел.[14]
На основании этих двух выводов был
сформулирован закон тяготения: любые
материальные
частицы притягиваются по
направлению друг к другу с силой
,
прямо пропорциональной произведению
масс (
и
)
и обратно пропорциональной квадрату
расстояния
между
ними:
Здесь
−
гравитационная
постоянная,[15]
значение которой впервые получил в
своих опытах Генри
Кавендиш. Используя данный
закон, можно получить формулы для расчета
силы тяготения тел произвольной формы.
Теория тяготения Ньютона хорошо описывает
движение планет Солнечной
системы и многих других небесных
тел. Однако, в ее основе лежит концепция
дальнодействия,
противоречащая теории
относительности. Поэтому
классическая теория тяготения неприменима
для описания движения тел, перемещающихся
со скоростью,
близкой к скорости света, гравитационных
полей чрезвычайно массивных объектов
(например, черных
дыр), а также переменных полей
тяготения, создаваемых движущимися
телами, на больших расстояниях от
них[16].
Более общей теорией гравитации является общая теория относительности Альберта Эйнштейна. В ней гравитация не характеризуется силой. Вместо этого свободное движение тел в гравитационном поле, воспринимаемое наблюдателем как движение по искривленным траекториям в трехмерном пространстве-времени с переменной скоростью, рассматривается как движение по инерции по прямой линии в искривленном четырехмерном пространстве-времени, в котором время в разных точках течет по-разному. Причем это искривление таково, что пространственно-временной промежуток между двумя пространственно-временными положениями данного тела минимален. Искривление пространства зависит от массы тел, а также от всех видов энергии, присутствующих в системе
Фундаментальные взаимодействия
Все силы в природе основаны на четырех типах фундаментальных взаимодействий. Максимальная скорость распространения всех видов взаимодействия равна скорости света в вакууме. Электромагнитные силы действуют между электрически заряженными телами, гравитационные − между массивными объектами. Сильное и слабое проявляются только на очень малых расстояниях, они ответственны за возникновение взаимодействия между субатомными частицами, включая нуклоны, из которых состоят атомные ядра.
Интенсивность сильного и слабого взаимодействия измеряется в единицах энергии (электрон-вольтах), а не единицах силы, и потому применение к ним термина "сила" объясняется берущей из античности традицией объяснять любые явления в окружаемом мире действием специфических для каждого явления "сил".
Понятие силы не может быть применено по отношению к явлениям субатомного мира. Это понятие из арсенала классической физики, ассоциирующейся (пусть даже только подсознательно) с ньютоновскими представлениями о силах, действующих на расстоянии. В субатомной физике таких сил уже нет: их заменяют взаимодействия между частицами, происходящими через посредство полей, то есть каких-то других частиц. Поэтому физики избегают употреблять слово сила, заменяя его словом взаимодействие.[12]
Каждый вид взаимодействия обусловлен обменом соответствующих переносчиков взаимодействия: гравитационное − обменом гравитонов (существование не подтверждено экспериментально), электромагнитное − виртуальных фотонов, слабое − векторных бозонов, сильное − пи-мезонов. В настоящее время электромагнитное и слабое взаимодействия объединены в более фундаментальное электрослабое взаимодействие. Делаются попытки объединения всех четырех фундаментальных взаимодействие в одно (так называемая теория великого объединения).
Всё многообразие проявляющих себя в природе сил в принципе может быть сведено к этим четырем фундаментальным взаимодействиям. Например, трение − это проявление электромагнитных сил, действующих между атомами двух соприкасающихся поверхностей, и принципа запрета Паули,[13] который не позволяет атомам проникать в область друг друга. Сила, возникающая при деформации пружины, описываемая законом Гука, также является результатом действия электромагнитных сил между частицами и принципа запрета Паули, заставляющих атомы кристаллической решетки вещества удерживаться около положения равновесия.[2].
Однако на практике оказывается не только нецелесообразной, но и просто невозможной по условиям задачи подобная детализация рассмотрения вороса о действии сил.
Фундамента́льные взаимоде́йствия — различные, не сводящиеся друг к другу типы взаимодействия элементарных частиц и составленных из них тел. На сегодня достоверно известно существование четырех фундаментальных взаимодействий: гравитационного, электромагнитного, сильного и слабого взаимодействий, причём электромагнитное и слабое взаимодействия, вообще говоря, являются проявлениями единого электрослабого взаимодействия. Ведутся поиски других типов взаимодействий, как в явлениях микромира, так и в космических масштабах, однако пока существование какого-либо другого типа взаимодействия не обнаружено.
В физике механическая энергия делится на два вида — потенциальную и кинетическую энергию. Причиной изменения движения тел (изменения кинетической энергии) является сила (потенциальная энергия) (см. второй закон Ньютона). Исследуя окружающий нас мир, мы можем заметить множество самых разнообразных сил: сила тяжести, сила натяжения нити, сила сжатия пружины, сила столкновения тел, сила трения, сила сопротивления воздуха, сила взрыва и т. д. Однако когда была выяснена атомарная структура вещества, стало понятно, что все разнообразие этих сил есть результат взаимодействия атомов друг с другом. Поскольку основной вид межатомного взаимодействия — электромагнитное, то, как оказалось, большинство этих сил — лишь различные проявления электромагнитного взаимодействия. Одно из исключений составляет, например, сила тяжести, причиной которой является гравитационное взаимодействие между телами, обладающими массой. История
К началу XX века выяснилось, что все известные к тому моменту силы сводятся к двум фундаментальным взаимодействиям: электромагнитному и гравитационному.
В 1930-е годы физики обнаружили, что ядра атомов состоят из нуклонов (протонов и нейтронов). Стало понятно, что ни электромагнитные, ни гравитационные взаимодействия не могут объяснить, что удерживает нуклоны в ядре. Было постулировано существование нового фундаментального взаимодействия: сильного взаимодействия. Однако в дальнейшем оказалось, что и этого недостаточно, чтобы объяснить некоторые явления в микромире. В частности, было непонятно, что заставляет распадаться свободный нейтрон. Тогда было постулировано существование слабого взаимодействия, и этого оказалось достаточно для описания всех до сих пор наблюдавшихся явлений в микромире.