
- •Содержание
- •Глава 1 9
- •Глава 3 37
- •Глава 4 49
- •Глава 5 71
- •Глава 11 133
- •Глава 12 135
- •Глава 1 Начальные положения
- •1.1. Отношения руководства
- •1.2. Цели
- •1.3. Тенденции индустрии
- •1.4. Финансовые проблемы
- •1.5. Целевые горизонты
- •1.6. Последовательность этапов сбора данных
- •1.7. Окружающая среда и погодные условия
- •1.8. Некоторые соображения (различия) 2d и 3d съемок
- •1.9 Определение 3d терминов
- •Линия Возбуждения
- •Линия Приема
- •Клетка (часто называется Ячейка)
- •Пэтч (Заплата)
- •Образец
- •Просека (Полоса)
- •Средняя точка
- •Супербин
- •Кратность
- •Отношение сигнал/помеха
- •Плотность пунктов возбуждения
- •Скат миграции (иногда называют ореол миграции)
- •Конус кратности
- •Глава 2 планирование и проектирование
- •2.1 Таблица Решений по Проектированию 3d съемки.
- •2.2 Прямая линия
- •2.3 Кратность
- •2.4 Кратность вдоль линии
- •2.5 Кратность поперек линии
- •2.6 Общая кратность
- •2.6.1 Общая кратность в пониманиях Максимального выноса и Расстояния между Линиями
- •2.6.2 Конус кратности
- •2.7 Отношение сигнал/помеха (s/n)
- •2.8 Размер Бина
- •2.8.1 Размер целевого горизонта
- •2.8.2 Максимальная неаляйсинговая частота
- •2.8.3 Горизонтальное разрешение
- •2.8.3.1 Латеральное разрешение после Миграции
- •2.8.3.2 Разделение дифракций
- •Давайте спроектируем 3d – Часть 1
- •2.10.1. Проектная глубина (целевая)
- •Xmax Проектная глубина
- •2.10.2. Интерференция Прямой Волны
- •2.10.8. Вычитание кратных волн
- •2.10.9. Выносы, необходимые для avo
- •2.10.10. Максимальная длина кабеля, имеющегося у подрядчика
- •2.10.11. Падение
- •Давайте спроектируем 3d – часть 2
- •Глава 3 Управление заплатками и краями
- •3.1. Распределение выносов
- •3.2 Распределение азимутов
- •3.3 Съемки с узким и широким азимутом
- •3.4 Правило 85%
- •3.5 Зона Френеля
- •3.6 Дифракции
- •3.6.1. Анатомия дифракции
- •3.7 Ореол миграции
- •3.8 Управление краями
- •3.9 Моделирование трассы луча
- •3.10 Длина записи
- •Спроектируем 3d – Часть 3
- •Спроектируем 3d – Часть 3
- •Глава 4 Блок-Схемы и крупноформатные Таблицы
- •4.1. Таблица решения проектирования съемки
- •4.2 Блок-схема проектирования 3d
- •4.3 Кратность относительно плотности пв
- •4.4 Интервал между пп
- •4.5 Основные уравнения 3d – Квадратные бины
- •4.6 Основные уравнения 3d – Прямоугольные бины
- •4.7 Основные шаги в расстановке 3d – Метод шести шагов
- •Кратность;
- •4.8 Графическое решение
- •4.9 Стандартизированные крупноформатные таблицы
- •4.10 Оценка стоимости 3d съемки
- •4.11 Модель стоимости
- •Глава 5 полевые расстилки
- •5.1 Полосы отстрела
- •5.2 Прямая линия
- •5.3 Кирпичная кладка
- •5.4 Неперпендикулярный (непрямоугольный)
- •5.5 Четные и Нечетные
- •5.6 Флекси-бин или фракционирование бина
- •5.7 Метод проектирования Кнопочная Заплатка
- •5.8 Зигзаг
- •5.9 Мега–Бин
- •5.10 Шестиугольный метод проектирования
- •5.11 Радиальный метод проектирования
- •5.12 Круговой метод отработки
- •5.13 Метод проектирования “Круглые заплатки”
- •5.14 Неопределенность
- •5.15 Полевая расстилка – Аргументы «За» и «Против» при использовании различных стратегий расстилки.
- •Глава 6 источники
- •6.1 Динамит
- •6.1.1 Программа работ
- •6.1.2 Тестирование
- •6.1.3 Стратегия отстрела
- •6.2 Виброустановки
- •6.2.1 Программа работ
- •6.2.2 Хорошо настраиваемые виброустановки
- •6.2.3 Тестирование
- •6.2.4 Стратегия отстрела
- •6.3 Другие виды источников
- •Глава 7 регистрирующее оборудование
- •7.1. Приемники
- •7.2. Регистрирующее оборудование (станции)
- •7.3 Распределительные системы
- •7.4 Телеметрические системы
- •Глава 8 расстановки
- •8.1. Вопрос о расстановках
- •8.2 Расстановки геофонов
- •8.3 Расстановка источников
- •8.4 Отклик комбинированной расстановки
- •8.5 Расстановки суммы
- •8.6 Методика недоступного сбора данных
- •Глава 9 практические полевые расчеты
- •9.1. Топография
- •9.2 Файлы – скрипты
- •X файл отношения
- •9.3 Расстилка/Подборка
- •9.4 Передвижения заплаток
- •9.5 Направление отстрела
- •9.6 Ширина полосы
- •9.7 Большие съемки
- •9.8 Посещение полевых работ (кк)
- •9.9 Общее Область изображения
- •Шаблоны первых срывов
- •Получение разрешений
- •Безопасность
- •Выносы и заносы (?)
- •9.10 Примеры полевых работ
- •Глава 10 обработка
- •10.1. Обработка
- •10.2 Поток обработки
- •10.3 Статика мпв
- •10.4 Анализы скоростей
- •10.5 Статика мов (Поверхностная Совместимая статика)
- •10.7 Сумма
- •10.8 Миграция и случайная дискретизация
- •10.9 Уравнивания для качества данных
- •Ответы на тест
- •Глава 11 Интерпретация
- •11.1. Системы интерпретации
- •11.2. Топографическая съемка
- •11.3. Интегрирование
- •Глава 12 Темы, особого интереса
- •12.1. Цифровые Ортокарты
- •12.2. Переходные Зоны
- •12.3. Досуммарная миграция для Ребинирования
- •12.4. Досуммарная глубинная миграция
- •12.5. 4D Сейсмика
- •12.6. Обменные волны в 3d Проектировании
- •12.7. 3D инверсия
- •12.8. Дальнейшие инструкции
- •Глоссарий терминов, используемых в 3д проектировании
- •Второй глоссарий терминов, относящихся к проектированию 3д съемки
12.6. Обменные волны в 3d Проектировании
Трехкомпонентная 3D съемка очень полезна для определения трещиноватых резервуаров или любого другого типа геологии, где можно ожидать анизотропных свойств пород. Важно попытаться расположить линии ПП в таком направлении, чтобы как можно лучше определить анизотропию скорости.
При проектировании 3D съемки с обменными волнами необходимо вычислить подходящий диапазон выносов, в котором обменные волны все еще будут присутствовать. Точка обмена (конверсионная точка) (точка, в которой случайная p –волна конвертируется в отраженную s –волну) не находится в положении средней точки между источником и приемником. Вернее, эта точка отстоит от места позиционирования источника на X c (Рис. 12.4):
Х с = r / (1 + V s / V p)
r – расстояние между ПВ и ПП
V s – средняя скорость S-волны
V p – средняя скорость Р-волны.
Рис. 12.4 Траектории Лучей Обменной Волны
Поэтому, расчет кратности и бинирование в вычислительном центре основаны на размере бина, равного (Lawton, 1993):
b = ∆ r / (1 + V s / V p)
∆ r – интервал между ПП
Н-р, допустим V p / V s = 2
тогда Х с = r / 1.5 = (2/3) * r
а b = ∆ r / 1.5 = (2/3) * ∆ r
Вышеприведенные формулы основаны на обращенной точке асимптоты (рис. 12.4), а не на глубинном варианте ООТ картирования, которое было бы намного сложнее. Хоть и известно, что V p / V s имеет преимущество в данном обмене размеров бина, нет необходимости знать его до начала сбора данных. Результаты первоначальной обработки могут помочь при определении коэффициента.
V s / V p будет < 1 (а обычно ~ 0.5) и поэтому, размер бина всегда будет больше, чем в стандартной 3D, перемещаясь вместе с обменными точками. Значение V s / V p , равное 1, будет способствовать нормальному размеру бина в половину расстояния между ПП ∆ r. Если размер бина не изменился и не отражает расположение этой обменной точки, то карта кратности будет изображаться полосами с потерей кратности в некоторых местах (Рис. 12.5а). Количество полос можно немного снизить, если расстояние между линиями ПВ будет выражено нечетным целым числом от расстояния между ПП, а не четным целым числом.
Однако, при увеличении размера бина, как описано выше, карта кратности будет еще сглаженнее (Рис. 12.5b).
Рис. 12.5a Распределение кратности для обычных бинов (Составляющая S-волн)
Рис. 12.5b Распределение кратности для бинов с большими размерами (Составляющая S-волн)
Ход процесса обработки обменной волны 3D находятся в фазе своего развития и необходимо обладать достаточным количеством знаний по проектированию и процессу обработки для того, чтобы воспользоваться дополнительной информацией, полученной путем регистрации всех трех компонентов. Об обработке данных обменной волны в 2D съемке подробно рассказано в книге Hauser, 1991.
Данные обменной волны проследят за изменением амплитуды на дальних выносах. Их с легкостью можно интерпретировать, как АКВ эффекты, но возникнуть могут лишь благодаря изменениям коэффициентов отражения, так как лучи достигают критического (предельного) угла.
Можно ли найти полевую геометрию, которая сглаживает распределение средних точек как в суммах компрессионных, так и обращенных волн при одновременном использовании постоянного размера бина в обоих случаях? Cordsen и Lawton, 1996 разработали такой способ в планировании для Blackfoot 3C 3D, собранных при выполнении работ по проекту CREWES в 1995 году. Четкость и возможность интерпретации данных превзошли ожидания.
При дальнейшем рассмотрении соотношение V p / V s предполагается равным 2.0. При значительных изменениях в соотношении необходимо проверить распределение средних точек при помощи пакета программного обеспечения, имеющегося в продаже. Заметьте, что рассчет размера бина и распределения средней точки в направлении линии ПП отличается от рассчета в направлении линии ПВ.
Рис. 12.6a
Рис. 12.6b
Распределение средних точек в направлении линии ПП может быть определено путем выбора расстояния между линиями ПВ, в соответствии со следующей формулой:
ЛПВ = ИЛПП * m
если m = четное целое число, средние точки появляются в соответствии с ИЛПП / (1 + V s / V p)
если m = нечетное целое число, средние точки появляются в соответствии с ИЛПП / (2*(1 + V s / V p))
если m = (целое число + 0.5), средние точки появляются в соответствии с ИЛПП / (4*(1 + V s / V p))
Распределение средних точек в направлении линии ПВ можно определить путем выбора расстояния между линиями ПП, в соответствии со следующей формулой:
ЛПП = ИЛПВ * n
если n = целое число, средние точки появляются в соответствии с ИЛПВ / (2*(1 + Vs / V p))
если n = (целое число + 0.5), средние точки появляются в соответствии с ИЛПВ / (2*(1 + V s / V p))
если n = (целое число + 0.25), средние точки появляются в соответствии с ИЛПВ / (4*(1 + V s / V p))
На рисунке 12.6a показано равномерное распределение кратности, выполненное, как для сумм компрессионных, так и обращенных волн. На рисунке 12.6b показано распределение средних точек для суммы обращенных волн.