
- •Содержание
- •Глава 1 9
- •Глава 3 37
- •Глава 4 49
- •Глава 5 71
- •Глава 11 133
- •Глава 12 135
- •Глава 1 Начальные положения
- •1.1. Отношения руководства
- •1.2. Цели
- •1.3. Тенденции индустрии
- •1.4. Финансовые проблемы
- •1.5. Целевые горизонты
- •1.6. Последовательность этапов сбора данных
- •1.7. Окружающая среда и погодные условия
- •1.8. Некоторые соображения (различия) 2d и 3d съемок
- •1.9 Определение 3d терминов
- •Линия Возбуждения
- •Линия Приема
- •Клетка (часто называется Ячейка)
- •Пэтч (Заплата)
- •Образец
- •Просека (Полоса)
- •Средняя точка
- •Супербин
- •Кратность
- •Отношение сигнал/помеха
- •Плотность пунктов возбуждения
- •Скат миграции (иногда называют ореол миграции)
- •Конус кратности
- •Глава 2 планирование и проектирование
- •2.1 Таблица Решений по Проектированию 3d съемки.
- •2.2 Прямая линия
- •2.3 Кратность
- •2.4 Кратность вдоль линии
- •2.5 Кратность поперек линии
- •2.6 Общая кратность
- •2.6.1 Общая кратность в пониманиях Максимального выноса и Расстояния между Линиями
- •2.6.2 Конус кратности
- •2.7 Отношение сигнал/помеха (s/n)
- •2.8 Размер Бина
- •2.8.1 Размер целевого горизонта
- •2.8.2 Максимальная неаляйсинговая частота
- •2.8.3 Горизонтальное разрешение
- •2.8.3.1 Латеральное разрешение после Миграции
- •2.8.3.2 Разделение дифракций
- •Давайте спроектируем 3d – Часть 1
- •2.10.1. Проектная глубина (целевая)
- •Xmax Проектная глубина
- •2.10.2. Интерференция Прямой Волны
- •2.10.8. Вычитание кратных волн
- •2.10.9. Выносы, необходимые для avo
- •2.10.10. Максимальная длина кабеля, имеющегося у подрядчика
- •2.10.11. Падение
- •Давайте спроектируем 3d – часть 2
- •Глава 3 Управление заплатками и краями
- •3.1. Распределение выносов
- •3.2 Распределение азимутов
- •3.3 Съемки с узким и широким азимутом
- •3.4 Правило 85%
- •3.5 Зона Френеля
- •3.6 Дифракции
- •3.6.1. Анатомия дифракции
- •3.7 Ореол миграции
- •3.8 Управление краями
- •3.9 Моделирование трассы луча
- •3.10 Длина записи
- •Спроектируем 3d – Часть 3
- •Спроектируем 3d – Часть 3
- •Глава 4 Блок-Схемы и крупноформатные Таблицы
- •4.1. Таблица решения проектирования съемки
- •4.2 Блок-схема проектирования 3d
- •4.3 Кратность относительно плотности пв
- •4.4 Интервал между пп
- •4.5 Основные уравнения 3d – Квадратные бины
- •4.6 Основные уравнения 3d – Прямоугольные бины
- •4.7 Основные шаги в расстановке 3d – Метод шести шагов
- •Кратность;
- •4.8 Графическое решение
- •4.9 Стандартизированные крупноформатные таблицы
- •4.10 Оценка стоимости 3d съемки
- •4.11 Модель стоимости
- •Глава 5 полевые расстилки
- •5.1 Полосы отстрела
- •5.2 Прямая линия
- •5.3 Кирпичная кладка
- •5.4 Неперпендикулярный (непрямоугольный)
- •5.5 Четные и Нечетные
- •5.6 Флекси-бин или фракционирование бина
- •5.7 Метод проектирования Кнопочная Заплатка
- •5.8 Зигзаг
- •5.9 Мега–Бин
- •5.10 Шестиугольный метод проектирования
- •5.11 Радиальный метод проектирования
- •5.12 Круговой метод отработки
- •5.13 Метод проектирования “Круглые заплатки”
- •5.14 Неопределенность
- •5.15 Полевая расстилка – Аргументы «За» и «Против» при использовании различных стратегий расстилки.
- •Глава 6 источники
- •6.1 Динамит
- •6.1.1 Программа работ
- •6.1.2 Тестирование
- •6.1.3 Стратегия отстрела
- •6.2 Виброустановки
- •6.2.1 Программа работ
- •6.2.2 Хорошо настраиваемые виброустановки
- •6.2.3 Тестирование
- •6.2.4 Стратегия отстрела
- •6.3 Другие виды источников
- •Глава 7 регистрирующее оборудование
- •7.1. Приемники
- •7.2. Регистрирующее оборудование (станции)
- •7.3 Распределительные системы
- •7.4 Телеметрические системы
- •Глава 8 расстановки
- •8.1. Вопрос о расстановках
- •8.2 Расстановки геофонов
- •8.3 Расстановка источников
- •8.4 Отклик комбинированной расстановки
- •8.5 Расстановки суммы
- •8.6 Методика недоступного сбора данных
- •Глава 9 практические полевые расчеты
- •9.1. Топография
- •9.2 Файлы – скрипты
- •X файл отношения
- •9.3 Расстилка/Подборка
- •9.4 Передвижения заплаток
- •9.5 Направление отстрела
- •9.6 Ширина полосы
- •9.7 Большие съемки
- •9.8 Посещение полевых работ (кк)
- •9.9 Общее Область изображения
- •Шаблоны первых срывов
- •Получение разрешений
- •Безопасность
- •Выносы и заносы (?)
- •9.10 Примеры полевых работ
- •Глава 10 обработка
- •10.1. Обработка
- •10.2 Поток обработки
- •10.3 Статика мпв
- •10.4 Анализы скоростей
- •10.5 Статика мов (Поверхностная Совместимая статика)
- •10.7 Сумма
- •10.8 Миграция и случайная дискретизация
- •10.9 Уравнивания для качества данных
- •Ответы на тест
- •Глава 11 Интерпретация
- •11.1. Системы интерпретации
- •11.2. Топографическая съемка
- •11.3. Интегрирование
- •Глава 12 Темы, особого интереса
- •12.1. Цифровые Ортокарты
- •12.2. Переходные Зоны
- •12.3. Досуммарная миграция для Ребинирования
- •12.4. Досуммарная глубинная миграция
- •12.5. 4D Сейсмика
- •12.6. Обменные волны в 3d Проектировании
- •12.7. 3D инверсия
- •12.8. Дальнейшие инструкции
- •Глоссарий терминов, используемых в 3д проектировании
- •Второй глоссарий терминов, относящихся к проектированию 3д съемки
X файл отношения
9.3 Расстилка/Подборка
Поперечные перекаты относятся к процедурам записи с пространственной заплаткой около краев 3D съемки.
Обычно партия способна начать быстрее, если они могут начать отстрел с половинной заплаткой возле границ съемки. Именно ожидание полной расстилки всей заплатки занимает много времени и гораздо чаще, чем потеря дальних выносов (?).
Когда сейсмическая партия начинает работать, они обычно расстилают кабель, пока он не будет достаточным, чтобы начать запись первого ПВ. Раскатать одну линию из 100 приемников может занять около 2 часов – или около полутора дней при расстилке 1000 каналов. После этого кабель с приемниками передвигается одновременно с продвижением отстрела.
Давайте предположим, что у нас 6 линий по 40 каналов в каждой являются активными в одной заплатке, если всего каналов – 240. по краям 3D съемки будут ли они размотаны и подмотаны. Очевидно, что это сохранит время (и деньги!), если партия сможет начать стрелять раньше, как в случае, когда выполняется поперечный перекат.
Рис. 9.3а показывает, что чем ровнее распределена кратность, тем более экономичны расстилка и подборка.
Рис. 9.3b показывает, что чем большее распределение кратности без поперечного переката (в данном случае вся съемка активна). Заметьте, что дополнительная кратность усиливается главным образом через дальние выносы, которые не могут способствовать окончательной сумме. Если поперечное расстояние гораздо меньше, чем продольное, возможно понадобится оставить одну или две дополнительных линий приема активными при поперечном перекате.
9.4 Передвижения заплаток
Очень важно минимизировать количество положений заплатки в 3D съемке. Передвижение заплатки занимает время, особенно, когда количество доступных каналов в партии ограничено.
Движения заплатки обычно выполняются с помощью использования переключателей в станции. Следовательно, в данной главе термин «переброс» синонимичен «передвижению» заплатки. С целью последующего обсуждения предположим, что начальное положение заплатки находится полностью внутри площади 3D (т.е. нет поперечного переката, см. Главу 9.3).
Рис. 9.3a
Рис. 9.3b
Рис. 9.3c
В продольном направлении количество передвижений заплатки (перебросов) рассчитывается следующим образом:
Продольный переброс = (продольный размер съемки – продольный размер заплатки) / интервал между линиями ПВ
Например:
(8000 м – 4000 м) / 400 м = 10 продольных перебросов
В поперечном направлении количество передвижений заплатки (или перебросов) рассчитывается следующим образом: (см рис 9.3а, 9.5)
Поперечный переброс = (поперечный размер съемки – поперечный размер заплатки) / интервал между линями ПП
Например:
(6000 м – 1500 м) / 300 м = 15 поперечных перебросов
Рис. 9.4. Пример для рассчёта количества передвижений заплатки
Вышеуказанное уравнение основано на сборе данных по ПВ только на одном интервале м/у линиями приема в центре заплатки. Если возможно пересечь пункты ПВ более чем на одном интервале ЛПП, это значительно снизит количество поперечных перебросов. Это стоит рассмотреть, особенно когда количество линий приема составляет 10 или больше.
Общее количество перебросов – это просто продукт двух компонентов:
Общее количество перебросов = продольные перебросы х поперечные перебросы
Например: 10 х 15 = 150 перебросов
Общее количество положений шаблона вычисляется очень просто:
Общее количество положений шаблона = (продольные перекаты + 1) х (поперечные перекаты + 1)
Например:
11 х 16 = 176 положений шаблона
Также пример изображён на Рис.9.4.