- •Содержание
- •Глава 1 9
- •Глава 3 37
- •Глава 4 49
- •Глава 5 71
- •Глава 11 133
- •Глава 12 135
- •Глава 1 Начальные положения
- •1.1. Отношения руководства
- •1.2. Цели
- •1.3. Тенденции индустрии
- •1.4. Финансовые проблемы
- •1.5. Целевые горизонты
- •1.6. Последовательность этапов сбора данных
- •1.7. Окружающая среда и погодные условия
- •1.8. Некоторые соображения (различия) 2d и 3d съемок
- •1.9 Определение 3d терминов
- •Линия Возбуждения
- •Линия Приема
- •Клетка (часто называется Ячейка)
- •Пэтч (Заплата)
- •Образец
- •Просека (Полоса)
- •Средняя точка
- •Супербин
- •Кратность
- •Отношение сигнал/помеха
- •Плотность пунктов возбуждения
- •Скат миграции (иногда называют ореол миграции)
- •Конус кратности
- •Глава 2 планирование и проектирование
- •2.1 Таблица Решений по Проектированию 3d съемки.
- •2.2 Прямая линия
- •2.3 Кратность
- •2.4 Кратность вдоль линии
- •2.5 Кратность поперек линии
- •2.6 Общая кратность
- •2.6.1 Общая кратность в пониманиях Максимального выноса и Расстояния между Линиями
- •2.6.2 Конус кратности
- •2.7 Отношение сигнал/помеха (s/n)
- •2.8 Размер Бина
- •2.8.1 Размер целевого горизонта
- •2.8.2 Максимальная неаляйсинговая частота
- •2.8.3 Горизонтальное разрешение
- •2.8.3.1 Латеральное разрешение после Миграции
- •2.8.3.2 Разделение дифракций
- •Давайте спроектируем 3d – Часть 1
- •2.10.1. Проектная глубина (целевая)
- •Xmax Проектная глубина
- •2.10.2. Интерференция Прямой Волны
- •2.10.8. Вычитание кратных волн
- •2.10.9. Выносы, необходимые для avo
- •2.10.10. Максимальная длина кабеля, имеющегося у подрядчика
- •2.10.11. Падение
- •Давайте спроектируем 3d – часть 2
- •Глава 3 Управление заплатками и краями
- •3.1. Распределение выносов
- •3.2 Распределение азимутов
- •3.3 Съемки с узким и широким азимутом
- •3.4 Правило 85%
- •3.5 Зона Френеля
- •3.6 Дифракции
- •3.6.1. Анатомия дифракции
- •3.7 Ореол миграции
- •3.8 Управление краями
- •3.9 Моделирование трассы луча
- •3.10 Длина записи
- •Спроектируем 3d – Часть 3
- •Спроектируем 3d – Часть 3
- •Глава 4 Блок-Схемы и крупноформатные Таблицы
- •4.1. Таблица решения проектирования съемки
- •4.2 Блок-схема проектирования 3d
- •4.3 Кратность относительно плотности пв
- •4.4 Интервал между пп
- •4.5 Основные уравнения 3d – Квадратные бины
- •4.6 Основные уравнения 3d – Прямоугольные бины
- •4.7 Основные шаги в расстановке 3d – Метод шести шагов
- •Кратность;
- •4.8 Графическое решение
- •4.9 Стандартизированные крупноформатные таблицы
- •4.10 Оценка стоимости 3d съемки
- •4.11 Модель стоимости
- •Глава 5 полевые расстилки
- •5.1 Полосы отстрела
- •5.2 Прямая линия
- •5.3 Кирпичная кладка
- •5.4 Неперпендикулярный (непрямоугольный)
- •5.5 Четные и Нечетные
- •5.6 Флекси-бин или фракционирование бина
- •5.7 Метод проектирования Кнопочная Заплатка
- •5.8 Зигзаг
- •5.9 Мега–Бин
- •5.10 Шестиугольный метод проектирования
- •5.11 Радиальный метод проектирования
- •5.12 Круговой метод отработки
- •5.13 Метод проектирования “Круглые заплатки”
- •5.14 Неопределенность
- •5.15 Полевая расстилка – Аргументы «За» и «Против» при использовании различных стратегий расстилки.
- •Глава 6 источники
- •6.1 Динамит
- •6.1.1 Программа работ
- •6.1.2 Тестирование
- •6.1.3 Стратегия отстрела
- •6.2 Виброустановки
- •6.2.1 Программа работ
- •6.2.2 Хорошо настраиваемые виброустановки
- •6.2.3 Тестирование
- •6.2.4 Стратегия отстрела
- •6.3 Другие виды источников
- •Глава 7 регистрирующее оборудование
- •7.1. Приемники
- •7.2. Регистрирующее оборудование (станции)
- •7.3 Распределительные системы
- •7.4 Телеметрические системы
- •Глава 8 расстановки
- •8.1. Вопрос о расстановках
- •8.2 Расстановки геофонов
- •8.3 Расстановка источников
- •8.4 Отклик комбинированной расстановки
- •8.5 Расстановки суммы
- •8.6 Методика недоступного сбора данных
- •Глава 9 практические полевые расчеты
- •9.1. Топография
- •9.2 Файлы – скрипты
- •X файл отношения
- •9.3 Расстилка/Подборка
- •9.4 Передвижения заплаток
- •9.5 Направление отстрела
- •9.6 Ширина полосы
- •9.7 Большие съемки
- •9.8 Посещение полевых работ (кк)
- •9.9 Общее Область изображения
- •Шаблоны первых срывов
- •Получение разрешений
- •Безопасность
- •Выносы и заносы (?)
- •9.10 Примеры полевых работ
- •Глава 10 обработка
- •10.1. Обработка
- •10.2 Поток обработки
- •10.3 Статика мпв
- •10.4 Анализы скоростей
- •10.5 Статика мов (Поверхностная Совместимая статика)
- •10.7 Сумма
- •10.8 Миграция и случайная дискретизация
- •10.9 Уравнивания для качества данных
- •Ответы на тест
- •Глава 11 Интерпретация
- •11.1. Системы интерпретации
- •11.2. Топографическая съемка
- •11.3. Интегрирование
- •Глава 12 Темы, особого интереса
- •12.1. Цифровые Ортокарты
- •12.2. Переходные Зоны
- •12.3. Досуммарная миграция для Ребинирования
- •12.4. Досуммарная глубинная миграция
- •12.5. 4D Сейсмика
- •12.6. Обменные волны в 3d Проектировании
- •12.7. 3D инверсия
- •12.8. Дальнейшие инструкции
- •Глоссарий терминов, используемых в 3д проектировании
- •Второй глоссарий терминов, относящихся к проектированию 3д съемки
Глава 9 практические полевые расчеты
9.1. Топография
Необходимо поддерживать близкие взаимоотношения между проектировщиком сейсмической 3D программы и топографами, чтобы правильно локализовать работы и затем выполнить их должным образом. Проектировщику необходимо изучить точные инструкции по тому, какие разрешения (допущения) могут быть сделаны в отношении любых ожидаемых изменений, например, как должны размещаться запланированные ПВ. На пересеченной местности топографы часто предполагают, что расстояние может быть измерено вдоль гряды, а не горизонтально. Измерение, горизонтально является единственным эффективным способом, чтобы гарантировать, что распределение СТ выполнено так, как намечено.
Предварительная схема программы в рабочем масштабе даст топографам хорошую основу для работы, а проектировщику – удобство, что ожидаемые положения для каждого ПВ и ПП будут задокументированы (Рис. 9.1). Местоположения ПВ и ПП должны нумероваться таким образом, чтобы две точки не имели один и тот же номер.
Топография, скважины, строения, трубопроводы, существующие профиля и прочие поверхностные препятствия могут влиять на местоположение линий и точек ПП и ПВ (Таблица 9.1). Проектировщик должен как можно серьезнее принять это к сведению (особенно топографические ограничения) на стадии планирования. Топограф должен подать много детальной информации относительно исключений, скатов и выносов проектировщику, который затем решит, приемлемы ли изменения и, возможно, перепроектирует программу. Прежде чем ПП и ПВ будут разбиты окончательно, проектировщик должен указать, как далеко могут быть смещены ПВ или ПП. В общем, вынесение пунктов на расстояние бόльшее, чем интервал между линиями. Когда вы хотите обойти препятствия, убедитесь, что линии (ПВ и ПП) остаются гладкими. Это предотвратит прерывистость в общем сборе ПВ и ПП, отсюда вытекает и предотвращение ложных изображений в миграции. ПВ не считаются отдельными, но они являются образцами общего сбора ПП, которые вы хотите увидеть хорошо собранными. Вынесение ПВ на целое число расстояния между пунктами создает разрывы, даже если сохраняется простая регистрация данных с соответствующими СТ.
Во многих случаях там, где существуют сложные поверхностные препятствия, в сложных съемках мы находим более выгодным поместить проектировщика в поле вместе с топографами. Многие проблемы могут быть разрешены гораздо проще непосредственно на точке. Идеально, если этот человек имеет сейсмический полевой опыт и если в его распоряжении есть переносной компьютер с загруженном начальным проектом 3D.
Формат цифровой информации по съемке, подлежащей передаче, должен быть установлен топографом до посещения места работ. Широко приемлем формат SEG-P1. Стандартные форматы предоставления данных для топографии можно найти в отчете по SEG (1983). Электронная передача топографических данных могут значительно сократить вероятность человеческой ошибки при копировании данных.
Координаты карт обычно передаются в проекции UTM (Универсальный Поперечный Меркатор); Центральный Меридиан, который используется в качестве ссылки, является чрезвычайно важной частью данных. Уже широко доступны компьютерные программы по переводу данных из одной географической системы координат в другую.
Для международных проектов необходимо уделить особое внимание всем деталям проекции и сфероида, на котором она основана. Например, в Аргентине используется модифицированная сеть UTM с происхождением на юго-востоке Тихого океана. В Африке на перевод длины и ширины влияет другой сфероид.
Окончательный план съемки 3D программы может быть не очень-то похожим на предварительную схему (напр., Рис. 9.2), но все же оставаться существенным элементом съемки не только для обработчика, но и для органов регулирования.
Когда окончательные планы для органов регулирования предоставлены, иногда они включают только соответствующие положения линий, а не точные координаты ПП и ПВ. Они также должны включать такую информацию, как пути доступа и объездов, которые могут потребоваться партии, чтобы добраться до всех точек 3D съемки.
|
|
а |
б |
в |
г |
Рис. 9.1
Таблица 9.1 Таблица требований к расстояниям (Канада/США)
|
Невзрывной источник |
Взрывной источник |
||
Строение |
50 м |
330 фт |
180 м |
300 фт |
Водяная скважина |
100 м |
330 фт |
180 м |
300 фт |
Трубопровод низкого давления |
3 м |
|
3 м |
|
Трубопровод высокого давления |
15 м |
300 фт |
32 м для ≤ 2 кг |
≥ 200 фт (≤ 5 фунт) |
(или нефтяные и газовые скважины) |
|
300 фт |
До 180 м в зависимости от размера заряда |
|
Теоретическое расположение.
Типичный конечный план.
Рис. 9.2
