
- •Очистка сточных вод
- •Введение
- •1 Группа
- •3 Группа
- •4 Группа
- •1. Решетка; 2 - бесконечная цепь; 3 грабли
- •Пример расчета решеток
- •Значение коэффициента Таблица 1
- •Р ис.4 Песколовки с круговым движением воды:
- •Расчет песколовок
- •Аэрируемые песколовки
- •Пример 1 Горизонтальная песколовка
- •Пример 2 Аэрируемая песколовка
- •Отстойники
- •Радиальные отстойники
- •Расчет вертикального отстойника
- •Расчет горизонтальных отстойников
- •Пример расчета горизонтального отстойника
- •Септики
- •Гидроциклоны
- •Ц ентрифуги
- •Очистка сточных вод от маслопродуктов
- •Флотация
- •Вакуумная флотация
- •Напорная флотация
- •И мпеллерная флотация
- •Электрофлотация
- •Пример расчета напорного флотатора
- •Барботажные абсорберы
- •Адсорберы с псевдоожиженным слоем активного угля
- •Абсорберы с механическим перемешиванием жидкости
- •Полые распыливающие абсорберы и циклонный скрубер
- •Фильтры
- •Микрофильтры
- •Каркасные фильтры
- •Открытые фильтры
- •Фильтры с плавающей загрузкой
- •Фильтры с эластичной загрузкой
- •Биохимическая очистка сточных вод
- •Состав активного ила и биопленки
- •Закономерности распада органических веществ
- •Нитрификация и денитрификация
- •Серосодержащие вещества
- •Окисление железа и марганца
- •Зависимость скорости биологической очистки от различных факторов
- •Абсорбция и потребление кислорода
- •Сооружения биологической очистки сточных вод Преаэраторы и биокоагуляторы
- •Биологические фильтры
- •Общие указания
- •Орошение загрузки биофильтров
- •Капельные биологические фильтры
- •Высоконагружаемые биологические фильтры Аэрофильтры
- •Биофильтры с пластмассовой загрузкой
- •Погружные дисковые фильтры
- •Барабанные погружные биофильтры
- •Примеры расчетов биофильтров Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пуск био-, аэрофильтров в работу
- •Аэротенки
- •Аэраторы
- •Пуск аэротенков
- •Примеры расчетов аэротенков Пример 1
- •Пример 2
- •Пример 3
- •Циркуляционные окислительные каналы (цок)
- •Расчет цок
- •Пример расчета цок
- •Биохимическая очистка сточных вод в окситенках
- •Пример расчета окситенка
- •Характеристики дисковых механических аэраторов поверхностного типа
- •Метантенки
- •Пример расчета метантенка
- •Аэрационные установки на полное окисление (аэротенки с продленной аэрацией)
- •Доочистка в биологических прудах
- •Расчет биологических прудов
- •I. Пруды с естественной аэрацией
- •П. Пруды с искусственной аэрацией
- •Пример расчета биологического пруда
- •Пример расчета поля фильтрации
- •Поля подземной фильтрации
- •Фильтрующие колодцы
- •Химическая и фзико - химическая очистка сточных вод
- •Коагуляция
- •Электрокоагуляция
- •Ионобменное обессоливание сточных вод
- •Расчет ионообменной очистки сточных вод
- •Обессоливание воды электродиализом
- •Обессоливание воды методом обратного осмоса
- •Узел очистки
- •Узел обратного осмоса
- •Узел декарбонизации
- •Узел деминерализации воды
- •Установки для обеззараживания сточных вод
- •Анализ сточных вод прошедших очистку
- •Определение взвешенных веществ
- •Определение окисляемости перманганатной
- •Определение окраски
- •Определение запаха
- •Определение прозрачности
- •Определение температуры
- •Определение показателя pH универсальным индикатором
- •Определение аммонийного азота
- •Определение нитритного азота
- •Определение нитратного азота
- •Определение биохимического потребления кислорода
- •Определение количества растворенного кислорода
- •Определение бпк5
- •Определение бихроматной окисляемости ускоренным методом
- •Холостой опыт
- •Определение количества активного хлора
- •Определение нефтепродуктов в сточной воде
- •Уcловия сброса сточных вод в водоемы
- •Выбор технологической схемы очистки сточных вод
- •Обезвоживание и утилизация осадков сточных вод Сгущение осадков
- •Площадки подсушивания
- •Сооружения для обеззараживания, компостирования, термической сушки и сжигания осадка
- •Основные конструкции сушилок
- •Б арабанная сушилка (для мелкокусковых и сыпучих материалов)
- •Сушилка с кипящим слоем
- •Вальцеленточные сушилки
- •Использование осадков сточных вод и активного ила
- •Автономные системы канализации
- •Искусственная очистка сточных вод
- •Литература
- •Приложения Задания к контрольным работам Задание №1
- •Задание №2
- •Задание №3
- •Задание №4
- •Задание №5
- •Задание №7 Рассчитать биологические пруды глубокой очистки
- •Содержание
Аэраторы
Аэраторы в аэротенках допускается применять:
- мелкопузырчатые - пористые керамические и пластмасссовые материалы (фильтросные пластины, трубы, диффузоры) и синтетические ткани;
- среднеузырчатые - щелевые и дырчатые трубы;
-крупнопузырчатые - трубы с открытым концом; механические и пневмо-механические.
Аэраторы
в перегородчатых смесителях следует
располагать на подставках высотой
0,1-0,15
м от дна, а в вихреых смесителях - в
конической его части на высоте 1,5-2
м над входным отверстием. Наименьшая
высота расположения аэратора в вихревых
смесителях принимается при наклоне
стенок нижней части, равной 45°. Расчетные
скорости движения воздуха, м/с, прииают:
на магистральном воздухопроводе -10-12,
в начале дырчатых ответвлений - 8-10
, на выходе из отверстий -20-30
Рис.43 Пористый аэратор: 1 - опорная труба;2 - наружный диспергирующий слой;3 - внутренний диспергирующий слой;4 - отверстие.
Рис.44 Пневмомеханический аэратор
1 - подача воздуха; 2 - кольцевой воздухораспределитель; 3 — турбины с лопатками
Рис.45 Трубчатые аэраторы
а, б - при смесителях вихревого типа; в, г - при смесителях перегородчатого типа; 1 - корпус смесителя; 2 - дырчатые ответвления; 3 - агистраль 4 - подача коагулянта; 5 - подача воды
Число аэраторов в регенераторах и на первой половине длины аэротенков-вытеснителей принимают вдвое больше, чем на остальной длине аэротенков, а заглубление – в соответствии с давлением воздуходувного оборудования и с учетом потерь в разводящих коммуникациях и аэраторах. В аэротенках предус-матривают возможность опорожнения и устройства для выпуска воды из аэраторов. При необходимости в аэротенках предусмат-ривают мероприятия по локализации пены - орошение водой через брызгала или применение химических антивспенивателей. Применение химиических антивспенивателей согласуют с органами санитарно-эпидемиологической службы и охраны рыбных запасов. Рециркуляцию активного ила осуществляют эрлифтами или насосами. Удельный расход воздуха qair, для аэрации очищаемой воды, при пневматической системе аэрации определяют по формуле:
qair = q0(Len-Lex)/ К1·К2·КT·К3·(Ca-C0) ,
где q0 - удельный расход кислорода воздуха, мг на 1 мг снятой БПКполн, принимаемый при очистке до БПКполн 15-20 мг/л - 1,1, при очистке до БПКполн свыше 20 мг/л - 0,9;
К1- коэффициент, учитывающий тип аэратора и принимаемый для мелкопузырчатой аэрации в зависимости от соотношения площадей аэрируемой зоны и аэротенка по табл.17;
К2- коэффициент, учитывающий глубину погружения аэраторов ha;
КT - коэффициент, учитывающий температуру сточных вод, который определяют по формуле:
КT =1+0,02(Tw -20) ,
где Tw - среднемесячная температура воды за летний период, °С; К3-коэффициент качества воды, принимаемый для городских сточных вод 0,85, при наличии ПАВ принимается в зависимости от величины az/at по табл. 19. Для производственных сточных вод - по опытным данным, при их отсутствии допускается принимать К3=0,7;
Са - растворимость кислорода воздуха в воде, мг/л, определяемая по формуле:
Са = (1+ha/20.6)Co,
где Co-растворимость кислорода в воде в зависимости от температуры и атмосферного давления, принимаемая по справочным данным;
ha-глубина погружения аэратора, м;
Cа-средняя концентрация кислорода в аэротенке, мг/л;
B первом приближении Cа допускается принимать 2 мг/л и необходимо уточнять на основе технико-экономических расчетов. Площадь аэрируемой зоны для пневматических аэраторов вклю-чает просветы между ними до 0,3 м.
Интенсивность аэрации Ja, м3/(м2·ч) определяют по формуле:
Ja = qair·Hat/tat ,
где Hat - рабочая глубина аэротенка, м; tat-период аэрации,ч.
Если вычисленная интенсивность аэрации свыше Ja,max для принятого значения K1 , необходимо увеличить площадь аэри-руемой зоны; если менее Ja,min для принятого значения K2 - следует увеличить расход воздуха, приняв Ja,min по табл. 18
Таблица 17
az/at |
0,05 |
0,1 |
0,2 |
0,3 |
0,4 |
0,5 |
0,75 |
1 |
К1 |
1,34 |
1,47 |
1,68 |
1,89 |
1,94 |
2 |
2,13 |
2,3 |
Ja,max , м3/(м2· ч) |
5 |
10 |
20 |
30 |
40 |
50 |
75 |
100 |
Таблица 18
ha |
0,5 |
0,6 |
0,7 |
0,8 |
0,9 |
1 |
3 |
4 |
5 |
6 |
К2 |
0,4 |
0,46 |
0,6 |
0,8 |
0,9 |
1 |
2,08 |
2,52 |
2,92 |
3,3 |
Ja,min , м3/(м2· ч) |
48 |
42 |
38 |
32 |
28 |
24 |
4 |
3,5 |
3 |
2,5 |
Таблица 19
az/at |
0,05 |
0,1 |
0,2 |
0,3 |
0,4 |
0,5 |
0,75 |
1 |
К3 |
0,59 |
0,59 |
0,64 |
0,66 |
0,72 |
0,77 |
0,88 |
0,99 |
При подборе механических аэраторов следует исходить из их производительности по кислороду, определенной при темпе-ратуре 20°С, скорости потребления и массообменных свойств жидкости, характеризуемых коэффициентами KT и K3 и дефи-цитом кислорода (Ca-C0)/Ca , определяемых по приведенным ранее данным. Число аэраторов Nma для аэротенков и биологических прудов определяют по формуле:
Nma=q0·(Len-Lex)·Wat /[1000·KT ·K3{(Ca-C0)/Ca }·tat ·Qma ,
где Wat - объем сооружения, м3;
Qma-производительность аэратора по кислороду, кг/ч,прини-маемая по паспортным данным;
tat - продолжительность пребывания жидкости в сооружении,ч. Зона действия аэратора определяется расчетом, ориентировочно она составляет 5-6 диаметров рабочего колеса.
Окситенки рекомендуется применять при условии подачи технического кислорода от кислородных установок промышлен-ных предприятий. Окситенки оборудуются механическими аэраторами, легким герметичным перекрытием, системой авто-матической подпитки кислорода и продувки газовой фазы, что обеспечит эффективность использования кислорода 90%.
Для очистки производственных сточных вод и их смеси с городскими сточными водами применяют окситенки, совмещен-ные с илотделителем.
Концентрацию кислорода в иловой смеси окситенка принимают в пределах 6-12 мг/л, дозу ила - 6-10 г/л.