
- •Очистка сточных вод
- •Введение
- •1 Группа
- •3 Группа
- •4 Группа
- •1. Решетка; 2 - бесконечная цепь; 3 грабли
- •Пример расчета решеток
- •Значение коэффициента Таблица 1
- •Р ис.4 Песколовки с круговым движением воды:
- •Расчет песколовок
- •Аэрируемые песколовки
- •Пример 1 Горизонтальная песколовка
- •Пример 2 Аэрируемая песколовка
- •Отстойники
- •Радиальные отстойники
- •Расчет вертикального отстойника
- •Расчет горизонтальных отстойников
- •Пример расчета горизонтального отстойника
- •Септики
- •Гидроциклоны
- •Ц ентрифуги
- •Очистка сточных вод от маслопродуктов
- •Флотация
- •Вакуумная флотация
- •Напорная флотация
- •И мпеллерная флотация
- •Электрофлотация
- •Пример расчета напорного флотатора
- •Барботажные абсорберы
- •Адсорберы с псевдоожиженным слоем активного угля
- •Абсорберы с механическим перемешиванием жидкости
- •Полые распыливающие абсорберы и циклонный скрубер
- •Фильтры
- •Микрофильтры
- •Каркасные фильтры
- •Открытые фильтры
- •Фильтры с плавающей загрузкой
- •Фильтры с эластичной загрузкой
- •Биохимическая очистка сточных вод
- •Состав активного ила и биопленки
- •Закономерности распада органических веществ
- •Нитрификация и денитрификация
- •Серосодержащие вещества
- •Окисление железа и марганца
- •Зависимость скорости биологической очистки от различных факторов
- •Абсорбция и потребление кислорода
- •Сооружения биологической очистки сточных вод Преаэраторы и биокоагуляторы
- •Биологические фильтры
- •Общие указания
- •Орошение загрузки биофильтров
- •Капельные биологические фильтры
- •Высоконагружаемые биологические фильтры Аэрофильтры
- •Биофильтры с пластмассовой загрузкой
- •Погружные дисковые фильтры
- •Барабанные погружные биофильтры
- •Примеры расчетов биофильтров Пример 1
- •Пример 2
- •Пример 3
- •Пример 4
- •Пример 5
- •Пуск био-, аэрофильтров в работу
- •Аэротенки
- •Аэраторы
- •Пуск аэротенков
- •Примеры расчетов аэротенков Пример 1
- •Пример 2
- •Пример 3
- •Циркуляционные окислительные каналы (цок)
- •Расчет цок
- •Пример расчета цок
- •Биохимическая очистка сточных вод в окситенках
- •Пример расчета окситенка
- •Характеристики дисковых механических аэраторов поверхностного типа
- •Метантенки
- •Пример расчета метантенка
- •Аэрационные установки на полное окисление (аэротенки с продленной аэрацией)
- •Доочистка в биологических прудах
- •Расчет биологических прудов
- •I. Пруды с естественной аэрацией
- •П. Пруды с искусственной аэрацией
- •Пример расчета биологического пруда
- •Пример расчета поля фильтрации
- •Поля подземной фильтрации
- •Фильтрующие колодцы
- •Химическая и фзико - химическая очистка сточных вод
- •Коагуляция
- •Электрокоагуляция
- •Ионобменное обессоливание сточных вод
- •Расчет ионообменной очистки сточных вод
- •Обессоливание воды электродиализом
- •Обессоливание воды методом обратного осмоса
- •Узел очистки
- •Узел обратного осмоса
- •Узел декарбонизации
- •Узел деминерализации воды
- •Установки для обеззараживания сточных вод
- •Анализ сточных вод прошедших очистку
- •Определение взвешенных веществ
- •Определение окисляемости перманганатной
- •Определение окраски
- •Определение запаха
- •Определение прозрачности
- •Определение температуры
- •Определение показателя pH универсальным индикатором
- •Определение аммонийного азота
- •Определение нитритного азота
- •Определение нитратного азота
- •Определение биохимического потребления кислорода
- •Определение количества растворенного кислорода
- •Определение бпк5
- •Определение бихроматной окисляемости ускоренным методом
- •Холостой опыт
- •Определение количества активного хлора
- •Определение нефтепродуктов в сточной воде
- •Уcловия сброса сточных вод в водоемы
- •Выбор технологической схемы очистки сточных вод
- •Обезвоживание и утилизация осадков сточных вод Сгущение осадков
- •Площадки подсушивания
- •Сооружения для обеззараживания, компостирования, термической сушки и сжигания осадка
- •Основные конструкции сушилок
- •Б арабанная сушилка (для мелкокусковых и сыпучих материалов)
- •Сушилка с кипящим слоем
- •Вальцеленточные сушилки
- •Использование осадков сточных вод и активного ила
- •Автономные системы канализации
- •Искусственная очистка сточных вод
- •Литература
- •Приложения Задания к контрольным работам Задание №1
- •Задание №2
- •Задание №3
- •Задание №4
- •Задание №5
- •Задание №7 Рассчитать биологические пруды глубокой очистки
- •Содержание
Напорная флотация
Этот вид очистки сточных вод выполняется в две стадии: насы-щение воды воздухом под давлением через пористые материалы, выделение пузырьков воздуха соответствующего диаметра и всплытие взвешенных и эмульгированных частиц примесей вместе с пузырьками воздуха. Если флотация проводится без добавления реагентов, то такая флотация относится к физическим способам очистки сточных вод.
И мпеллерная флотация
Рис.21 Схема импеллерного флотатора
1-флотационная камера; 2-импеллерный диспергатор; 3-камера отстаивания; 4-привод импеллерного диспергатора
Флотаторы импеллерного типа применяют для фракциони-рования в пену маслопродуктов и ПАВ, при содержании их в сточных водах Сen-менее 100мг/л. Данный способ очистки в промышленности применяют редко из-за его небольшой эффективности, высокой турбулентности потоков во флотацион-ной камере, приводящей к разрушению хлопьевидных частиц.
Электрофлотация
При пропускании постоянного электрического тока через сточную воду на катоде образуется водород, который флотирует загязнения. Достоинствами электрофлотации являются непре-рывность процесса, широкий диапазон применения, небольшие капитальные и эксплуатационные затраты, простая аппаратура, селективность выделения примесей, по сравнению с отстаи-ванием, большая скорость процесса, а также возможность получения шлама более низкой влажности (90-95%), высокая степень очистки (95-98%), возможность рекуперации удаляемых веществ.
Рис.22 Электрофлотационная очистка бытовых стоков,содержащих ПАВ.
1 – корпус; 2 – патрубок для подачи воды; 3 – патрубок для подачи реагентов; 4 – патрубок для отвода пены; 5 – пеноприемник; 6 – пеносборное устройство; 7, 8 – перегородка; 9 – мотор-редуктор; 10 – патрубок для отвода воды; 11 – угольный фильтр; 12 – электроды.
Напорные, вакуумные, безнапорные, электрофлотационные установки применяют при очистке сточных вод с содержанием взвешенных веществ свыше 100-150 мг/л (с учетом твердой фазы, образующейся при добавлении коагулянтов). При меньшем содержании взвесей для фракционирования в пену ПАВ, нефтепродуктов и др. и для пенной сепарации применяют установки импеллерные, пневматические и с диспергированием воздуха через пористые материалы. Для осуществления процесса разделе-ния фаз применяют прямоугольные и круглые флотокамеры. Объем флотокамер складывается из объемов рабочей зоны (глубина 1,0-3,0 м), зоны формирования и накопления пены (глубина 0,2-1,0 м), зоны осадка (глубина 0,5-1,0 м). Гидравлическая нагрузка принимается -3-6 м3/(м2·ч) Число флотокамер должно быть не менее двух, все камеры рабочие. Для повышения степени задержания взвешенных веществ используют коагулянты и флокулянты.
Периодический съем применяют в напорных, безнапорных и электрофлотационных установках. Расчетную влажность пены принимают,%:
-при непрерывном съеме - 96-98%;
-при периодическом съеме с помощью скребков транспортеров или вращающихся скребков - 94-95%;
-при съеме шнеками и скребковыми тележками - 92-93%.
В осадок выпадает от 7 до 10 % задержанных веществ с влажностью 95-98 %. Объем пены (шлама) Wmud при влажности 94-95 % определяют по формуле (% к объему обрабатываемой воды):
Wmud =1,5 Сen ,
где Сen - исходная концентрация нерастворенных примесей, г/л. При проектировании установок импеллерных, пневматических и с диспергированием воздуха через пористые материалы прини-мают:
-продолжительность флотации - 20-30 мин;
-расход воздуха при работе в режиме флотации - 0,1-0,5 м3/м3;
-расход воздуха при работе в режиме пенной сепарации -3-4 м3/м3 (50-200 л на 1 г извлекаемых ПАВ) или 30-50 м3/(м2·ч);
-глубину воды в камере флотации - 1,5-3 м;
- окружную скорость импеллера - 10-15 м/с;
-камеру для импеллерной флотации - квадратную со стороной, равной 6D (D- диаметр импеллера 200-750 мм);
-скорость выхода воздуха из сопел при пневматической флотации - 100-200 м/с;
-диаметр сопел - 1-1,2 мм; диаметр отверстий пористых пластин - 4-20 мкм;
-давление воздуха под пластинами - 0,1-0,2 МПа (1-2 кгс/см2).
При проектировании напорных флотационных установок прини-мают:
-продолжительность флотации - 20-30 мин;
-количество подаваемого воздуха, л на 1 кг извлекаемых загряз-няющих веществ: 40 - при исходной их концентрации Сen<200 мг/л, 28 - при Сen = 500, 20 - при Сen = 1000 мг/л, 15 - при Сen = 3-4 г/л;
-схему флотации - с рабочей жидкостью, если прямая флотация не обеспечивает подачу воздуха в нужном количестве;
-флотокамеры с горизонтальным движением воды при произво-дительности до 100 м3/ч, с вертикальным - до 200, с радиальным - до 1000 м3/ч;
-горизонтальную скорость движения воды в прямоугольных и радиальных флотокамерах - не более 5 мм/с;
-подачу воздуха через эжектор во всасывающий патрубок насоса - при небольшой высоте всасывания (до 2 м) и незначительных колебаниях уровня воды в приемном резервуаре (0,5-1,0 м), компрессором в напорный бак - в остальных случаях.