2. Виды средних
Средняя величина – это обобщающая характеристика единиц совокупности по какому–либо варьирующему признаку. Средние величины позволяют сравнивать уровни одного и того же признака в различных совокупностях и находить причины этих расхождений.
Средние величины делятся на два больших класса: степенные средние и структурные средние
Степенные средние:
Арифметическая
Гармоническая
Геометрическая
Квадратическая
Структурные средние:
Мода
Медиана
Выбор формы средней величины зависит от исходной базы расчета средней и от имеющейся экономической информации для ее расчета.
Простая средняя арифметическая — Равна отношению суммы индивидуальных значений признака к количеству признаков в совокупности
Средняя гармоническая — используется в тех случаях когда известны индивидуальные значения признака и произведение , а частоты неизвестны.
Среднегеометрическая величина дает возможность сохранять в неизменном виде не сумму, а произведение индивидуальных значений данной величины. Ее можно определить по следующей формуле:
Среднегеометрические величины наиболее часто используются при анализе темпов роста экономических показателей.
Среднеквадратические величины используются для расчета некоторых показателей, например коэффициент вариации, характеризующего ритмичность выпуска продукции. Здесь определяют среднеквадратическое отклонение от планового выпуска продукции за определенный период по следующей формуле:
Мода — это наиболее часто встречающийся вариант ряда. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле:
где:
— значение моды
— нижняя граница модального интервала
— величина интервала
— частота модального интервала
— частота интервала, предшествующего модальному
— частота интервала, следующего за модальным
Медиана — это значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.
При вычислении медианы для интервального вариационного ряда сначала определяют медианный интервал, в пределах которого находится медиана, а затем — значение медианы по формуле:
где:
— искомая медиана
— нижняя граница интервала, который содержит медиану
— величина интервала
— сумма частот или число членов ряда
- сумма накопленных частот интервалов, предшествующих медианному
— частота медианного интервала
3. Показатели ряда динамики
Анализ интенсивности изменения во времени осуществляется с помощью показателей, получаемых в результате сравнения уровней. К таким показателям относятся: абсолютный прирост, темп роста, темп прироста, абсолютное значение одного процента. Для расчета показателей анализа динамики на постоянной базе, каждый уровень ряда сравнивается с одним и тем же базисным уровнем. Исчисляемые, при этом, показатели называются базисными. Для расчета показателей анализа динамики на переменной базе, каждый последующий уровень ряда сравнивается с предыдущим. Вычисленные таким образом показатели анализа динамики называются цепными. Важнейшим статистическим показателем анализа динамики является абсолютный прирост (сокращение), т.е. абсолютное изменение, характеризующее увеличение или уменьшение уровня ряда за определенный промежуток времени. Абсолютный прирост с переменной базой называют скоростью роста.
Абсолютный прирост:
базисный
∆y=yi-y0
цепной
∆y=yi-yi-1
Для оценки интенсивности, т.е. относительного изменения уровня динамического ряда за какой-либо период времени, исчисляют темпы роста (снижения). Темп роста всегда представляет собой положительное число.
Коэффициент роста:
базисный:
цепной:
Темп роста:
базисный:
цепной:
Таким образом,
Tp=Kp*100
Темп прироста (сокращения) показывает, на сколько процентов сравниваемый уровень больше или меньше уровня, принятого за базу сравнения и вычисляется как отношение абсолютного прироста к абсолютному уровню, принятому за базу сравнения. Темп прироста может быть положительным, отрицательным или равным нулю, выражается он в процентах или в долях единицы (коэффициенты прироста).
Темп прироста:
базисный:
цепной:
Темп прироста (сокращения) можно получить, если из темпа роста, выраженного в процентах, вычесть 100%: Tnp=Tp-100
Коэффициент прироста получается вычитанием единицы из коэффициента роста:
Knp=Kp-1
При анализе динамики развития следует также знать, какие абсолютные значения скрываются за темпами роста и прироста. Результат выражают показателем, который называют абсолютным значением (содержанием) одного процента прироста и рассчитывают как отношение абсолютного прироста к темпу прироста за этот период времени, %:
A%=
