Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
анатомия ответы.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
369.53 Кб
Скачать

7. Эпифиз. Шишковидное тело

Шишковидное тело (corpus pineale), или эпифиз мозга раз­вивается из выпячивания крыши будущего III желудочка голов­ного мозга на 5—6-й неделе внутриутробного развития. Эпифиз располагается в бороздке между верхними холмиками пластинки крыши (четверохолмия) среднего мозга и прикреплен поводками к обоим таламусам. Он округлой формы, масса его у взрослого человека не превышает 0,2 г. Эпифиз покрыт снаружи соединительно-тканной капсулой, от которой внутрь железы отходят соединительно-тканные трабе-кулы, разделяющие ее на дольки, состоящие из клеток двух ти­пов: железистых — крупных многоугольных, многоотростчатых пинеалоцитов, располагающихся в центре дольки, и глиальных клеток, находящихся главным образом по периферии. Функция пинеалоцитов имеет четкий суточный ритм: ночью синтезируется мелатонин, днем — серотонин. Этот ритм связан с освещенностью, при этом свет вызывает угнетение синтеза мелатонина. Воздей­ствие света осуществляется при участии гипоталамуса. В настоя­щее время считают, что эпифиз регулирует функцию половых желез, в первую очередь половое созревание. У новорожденного ребенка масса эпифиза около 7 мг, в те­чение первого года она достигает 100 мг и удваивается к 10 годам, после чего практически не меняется. В пожилом возрасте в эпи­физе могут возникать кисты, откладываться «мозговой песок», поэтому его масса увеличивается.

Масса железы у взрослого человека около 0,2 г, длина 8-15 мм, ширина 6-10 мм, толщина 4-6 мм.

Эпифиз вырабатывает в первую очередь серотонин и мелатонин, а также норадреналин, гистамин. В эпифизе обнаружены пептидные гормоны и биогенные амины. Основной функцией эпифиза является регуляция циркадных (суточных) биологических ритмов, эндокринных функций, метаболизма (обмена веществ) и приспособление организма к меняющимся условиям освещенности.

Мелатонин определяет ритмичность гонадотропных эффектов, в том числе продолжительность менструального цикла у женщин. Этот гормон изначально был выделен из шишковидных тел крупного рогатого скота, и, как выяснилось, оказывает тормозящее влияние на функцию половых желез, точнее сдерживает выделяемый уже другой железой (гипофизом) гормон роста. После удаления эпифиза у цыплят наступает преждевременное половое созревание (тот же эффект возникает и в результате опухоли эпифиза). У млекопитающих удаление шишковидного тела вызывает увеличение массы тела, у самцов - гипертрофию (увеличение) семенников и усиление сперматогенеза, а у самок - удлинение периода жизни желтых тел яичника и увеличение матки.

Избыток света тормозит превращение серотонина в мелатонин. В темноте, напротив, усиливается синтез мелатонина. Этот процесс идет под влиянием ферментов, активность которых также зависит от освещенности. Этим объясняют повышение половой активности животных и птиц весной и летом, когда в результате увеличения продолжительности дня, секреция эпифиза подавляется. Учитывая, что эпифиз регулирует целый ряд важных реакций организма, а в связи со сменой освещенности эта регуляция циклична, можно считать его регулятором "биологических часов" в организме.

Гормоны эпифиза угнетают биоэлектрическую активность мозга и нервно-психическую деятельность, оказывая снотворный и успокаивающий эффект.

8. Физиология и паталогия околощитовидных желез. Паращитовидные (околощитовидные) железы (glandulae para-thyroideae) образуются из эпителия III—IV жаберных карманов на 7-й неделе эмбрионального развития. Две пары мелких желез (верхние и нижние) располагаются на задней поверхности долей щитовидной железы, однако количество их варьирует от 2 до 8; общая масса желез у взрослого человека равна 0,1—0,35 г. Подобно всем железам, паращитовидные покрыты соедини­тельно-тканной капсулой, от которой вглубь отходят соединитель­но-тканные прослойки, делящие ткань железы на группы клеток. Эти группы образованы паратиреоцитами нескольких видов: светлые главные с базофильной цитоплазмой (у детей в возрасте до 8—10 лет других клеток нет), ацидофильные (появляются с 8—10 лет), очень богатые митохондриями. В настоящее время считают, что оба вида клеток — это, по существу, одни и те же клетки на разных этапах развития. Главные клетки продуцируют белковый паратиреоидный гормон, который регулирует уровень кальция и опосредованно фосфора в крови, тем самым оказывает влияние на возбудимость нервной и мышечной системы. После удаления паращитовидных желез уровень кальция в крови снижа­ется, а фосфора — повышается. Гормон действует на кости, вызы­вая усиление функции остеокластов, которые производят деминерализацию костной ткани, выделение Са в кровь; избыток фос­фора, также выделяющийся при этом из кости, удаляется поч­ками. Вместе с тем гормон способствует уменьшению выделения кальция почками и увеличению его всасывания в кишечнике. Его антагонистом является тиреокальцитонин, вырабатываемый околофолликулярными клетками щитовидной железы. У новорожденных масса паращитовидных желез не превышает 10 мг, к году она достигает 20—30 мг, к 5 годам удваивается, к 10 — возрастает в 3 раза, а к 20 достигает постоянной величины, не изменяясь в течение всей жизни человека.

ФУНКЦИИ ОКОЛОЩИТОВИДНЫХ ЖЕЛЕЗ У человека имеются четыре околощитовидные железы прилегающие к задней поверхности щитовидной железы. Их продукт—паратирин или паратгормон участвует в регуляции содержания кальция в организме. Он повышает концентрацию кальция в крови, усиливая его всасывание в кишечнике и выход из костей. Выработка паратгормона усиливается при недостаточном содсржании кальция в крови и в результате симпатических влияний, а подавление секреции — при избытке кальция. Нарушение нормаль­ной секреции приводит в случае гиперфункции околощитовидных желез к потере костной тканью кальция и фосфора (деминерализа­ция костей) и деформации костей, а также к появлению камней в почках, падению возбудимости нервной и мышечной тканей, ухуд­шению процессов внимания и памяти. В случае недостаточной функции и околощитовидных желез возникают резкое повышение возбу­ди мости нервных центров, патологические судороги и смерть в результате тетанического сокращения дыхательных мышц.

9. Надпочечники Будучи анатомически единым, надпочечник, или надпочечная железа (glandula suprarcnalis), по существу состоит из двух желез, представленных корковым и мозговым веществом. Корковое вещество развивается из мезодермы, расположенной между дву­мя первичными почками на 5-й неделе развития. Из того же источника возникают и зачатки половых желез. Мозговое веще­ство имеет эктодермальное происхождение. Оно развивается из выселяющихся из закладки узлов симпатического ствола симпа-тобластов, которые превращаются в хромаффинобласты. Из них наряду с мозговым веществом образуются также параганглии. Зачаток мозгового вещества внедряется в зачаток коркового, в результате чего образуется единый надпочечник. Надпочечная железа напоминает по форме уплощенную пи­рамиду со слегка закругленной вершиной. В надпочечнике раз­личают переднюю, заднюю и почечную поверхности, последняя прилежит к верхнему концу почки. Надпочечники располагаются забрюшинно в толще околопочечного жирового тела на уровне XI — XII грудных позвонков, причем правый лежит несколько ниже левого. Масса одного надпочечника взрослого человека около 12—13 г, размеры 40—60X20—30X2—6 мм. Масса надпочечника новорожденного ребенка 8—10 г, в тече­ние первых дней после рождения она уменьшается в 2—3 раза, к 5 годам восстанавливается и достигает максимальных разме­ров к 20 годам. Беременность вызывает некоторое увеличение массы надпочечниковых желез. В старческом возрасте масса над­почечников несколько уменьшается. На передней поверхности каждого надпочечника видны воро­та, через них выходит центральная вена органа. Надпочечник покрыт соединительно-тканной капсулой, от которой в глубь железы отходят тонкие прослойки, разделяющие его корковое вещество на множество эпителиальных тяжей, окутанных густой сетью капилляров. В корковом веществе различают 3 зоны: клубочковую (на­ружную), пучковую среднюю и сетчатую (на границе с мозговым веществом). Клубочковая зона образована мелкими клетками, расположенными в виде клубочков. Самая широкая часть коры представлена пучковой зоной. Она сформирована крупными светлыми клетками (заполненными каплями липидов), располагающимися длинными тяжами, ориентированными перпендикулярно к поверхности органа. В сетчатой зоне мелкие клетки образуют небольших размеров скопления (группы кле­ток). Указанные зоны достаточно четко отделены друг от друга анатомически и, по современным воззрениям, вырабатывают различные гормоны: клубочковая — минералокортикоиды (алъдо-стерон), пучковая — глюкокортикоиды (гидрокортизон, кортизон и кортикостерон), сетчатая — андрогены, эстрогены и проге­стерон (последние в небольшом количестве).

Надпочечники – парный орган. Они как бы прилеплены к верхнему полюсу обеих почек. Анатомическое строение каждого надпочечника напоминает слоеный пирог: сверху жировая оболочка, под ней соединительнотканная, затем идет корковый слой, а в самом центре – мозговой.Корковый и мозговой слои вырабатывают гормоны, влияющие на разные процессы жизнедеятельности организма. Надпочечники весят 5–6 г, мозговой слой составляет не более 20% от общей массы железы. НАДПОЧЕЧНИКИ, КОРКОВЫЙ СЛОЙ Клубочковая зона минерало-кортикоиды (альдостерон) - Регуляция одного и минерального обменов, сохранение натрия в организме Пучковая зона: глюкокортико-иды (кортизол) - Регуляция углеводного, белкового обменов, угнетение воспалительных реакций Сетчатая зона: андрогены - Мужские половые гормоны, развитие мужских половых органов и вторичных половых признаков Основные гормоны надпочечников – адреналин и норадреналин – выделяются в кровь под воздействием нервных импульсов. Эти два родственных гормона важны для приспособительных реакций организма, особенно в экстремальных, стрессовых ситуациях. При мобилизации всех внутренних резервов клетки мозгового вещества за считанные часы могут выбросить в кровь почти весь свой запас адреналина. читель. Поступая в кровь, адреналин увеличивает силу и частоту сердечных сокращений, вызывает сужение мелких артерий, расширяет венечные сосуды сердца и скелетных мышц, обеспечивая этим органам хорошее кровоснабжение. Адреналин и энергетически обеспечивает приспособительные реакции. Он способствует повышению содержания в крови глюкозы – основного источника энергии, усиливает распад гликогена в печени. В мышцах этот гормон увеличивает образование молочной кислоты, которая в печени превращается в глюкозу. Он буквально «выгребает» запасы углеводов из различных депо. Одновременно адреналин тормозит секрецию инсулина, который, как известно, повышает проницаемость клеточных мембран для глюкозы, чем снижает ее содержание в крови. Норадреналин по химическому строению и действию схож с адреналином. Он как бы продолжает и завершает реакции, которые возникают в организме под действием адреналина. В экстремальных ситуациях, например при кислородом голодании, снижении сахара в крови, надпочечники могут мобилизовать защитные силы организма. Гиперфункция надпочечников ведет к изменению вторичных половых признаков, нарушению обмена веществ, увеличению количества сахара в крови. Развивается болезнь Иценко–Кушинга с характерным ожирением лица и туловища, повышается артериальное давление, разрыхляется костная ткань, что ведет к самопроизвольным переломам костей. Гипофункция надпочечников ведет к их атрофии. Корковый слой вырабатывает недостаточно гормона кортина. Результатом атрофических изменений надпочечников является бронзовая болезнь. Для нее характерно общее нарушение обменных процессов, отсутствие аппетита, тошнота и рвота, боли в области живота. Больной быстро теряет в весе, наступает истощение, появляются темные пятна на слизистых оболочках губ, десен. Кожа лица и открытых частей тела приобретает цвет старой бронзы. Бронзовую болезнь И.С. Тургенев описывает в рассказе «Живые мощи»: «Я приблизился – и остолбенел от удивления. Передо мною лежало живое человеческое существо, но что это было такое? Голова совершенно высохшая, одноцветная, бронзовая – ни дать, ни взять икона старинного письма, нос узкий, как лезвие ножа, губ почти не видать – только зубы белеют и глаза, да из-под платка вылезают на лоб жидкие пряди желтых волос». Бронзовая болезнь впервые была описана английским врачом Т.Аддисоном и поэтому называется также аддисоновой болезнью, при которой нарушается обмен солей между кровью и тканями тела.

10. Поджелудочная железа среди эндокринных желез занимает особое место. Она функционирует не только как железа внутренней секреции, но является и одной из основных пищеварительных желез: вырабатывает и поставляет в двенадцатиперстную кишку панкреатический сок, содержащий ферменты, необходимые для нормального пищеварения. Весит поджелудочная железа 70–120 г, длина ее 16–22 см. Эндокринная часть железы составляет 2–3% массы. Секреторные клетки, вырабатывающие гормоны, образуют специфические скопления – панкреатические островки (островки Лангерганса), разбросанные по всей железе, но больше всего их в хвостовом отделе. Основной гормон поджелудочной железы – инсулин, снижающий уровень сахара в крови и оказывающий влияние на жировой обмен. Интересна история открытия инсулина. В конце XIX в. немецкие физиологи О.Минковский и И. фон Меринг, изучая регуляцию процесса пищеварения, в ходе экспериментов удаляли собакам поджелудочную железу. Служитель, убирая за собаками в клетках, обратил внимание, что на мочу слетается множество мух. Оказалось, что в моче собак, лишенных поджелудочной железы, содержится большое количество сахара. Клеточный состав островков Лангерганса неоднороден: исследователи обнаружили здесь разные клетки – А, В, Д и РР. Самые многочисленные В-клетки – 70%; А-клетки – 20%; Д-клетки – 5–8%; РР-клетки – 0,5–3%. В-клетки первоначально синтезируют биологически неактивный проинсулин. Только после обработки специфическими ферментами в комплексе Гольджи проинсулин превращается в инсулин. В-клетки упаковывают готовую продукцию в особые секреторные гранулы и хранят до тех пор, пока не потребуется выделить инсулин в кровь. Когда в крови повышается уровень глюкозы, избыток глюкозы превращается в гликоген, который депонируется в печени и мышцах. Нарушение секреции инсулина ведет к сахарному диабету. У больного диабетом железа утрачивает способность реагировать на изменения содержания сахара в крови. А-клетки синтезируют гормон глюкагон, который тоже регулирует уровень глюкозы. Глюкагон называют физиологическим антагонистом инсулина. Если инсулин депонирует избытки глюкозы, то глюкагон, напротив, включает механизмы, извлекающие гликоген из этих депо. Таким образом он предотвращает сильное снижение уровня глюкозы в крови, которое может произойти при усиленной секреции инсулина. Подобный антогонизм не мешает нормальной деятельности поджелудочной железы. Именно благодаря слаженной деятельности инсулина и глюкагона в здоровом организме содержание глюкозы в крови поддерживается на определенном уровне. Сахарный диабет – тяжелое заболевание. Организм теряет способность усваивать сахар, он накапливается в крови и выводится с мочой. Недостаток инсулина приводит к обезвоживанию тканей. Потеря воды организмом вызывает у больного мучительную жажду. Больной выделяет в сутки от 10 до 30 л мочи. Содержание сахара в ней может достигать 5–10% (в норме моча не содержит сахара). Наблюдается похудение, иногда, наоборот, ожирение. У диабетиков нарушается обмен жиров и белков. Белки расщепляются не полностью, промежуточные продукты вызывают тяжелое отравление организма. Нарушение нормальной функции поджелудочной железы вызывает серьезные сдвиги в обмене веществ. Знание физиологической основы этих процессов позволяет лечить диабет. Прежде всего врач устанавливает правильную диету для больного. Важным средством лечения является введение инсулина. Гормоны, вырабатываемые эндокринной частью. В островках Лангерганса большинства позвоночных выявляют два основных типа железистых клеток, вырабатывающих разные гормоны: ин­сулин и глюкагон. Клетки, синтезирующие инсулин, называют бета- (или В-) клетками; клетки, вырабатывающие глюкагон, — альфа- (или А-) клетками. Кроме них определен третий тип клеток — дельта-клетки, в которых синтезируется соматостатин (рис. 6.15). Бета-клетки, синтезирующие инсулин, обнаружены у всех по­звоночных. У низших позвоночных (круглоротые, хрящевые рыбы) альфа-клетки и глюкагон не выявлены. У всех остальных позво­ночных в островках Лангерганса синтезируются инсулин и глюкагон, основная функция которых состоит в регуляции метаболических процессов; от этих гормонов в значительной степени зависит уровень глюкозы в крови, необходимый для нормальной жизнедеятельности организма. Инсулин представляет собою белковый гормон с молекулярной массой около 6000 Да. Он состоит из двух полипептидных цепей, соединенных двумя дисульфидными мостиками. Инсулин образу­ется из предшественника — проинсулина — под влиянием протеаз. Активность проинсулина невелика (5 % активности инсулина). Превращение проинсулина в инсулин происходит в бета-клетках. Инсулин был первым белковым гормоном, синтезированным ис­кусственно. В настоящее время инсулин (или инсулиноподобный гормон) обнаружен у многих беспозвоночных животных, что свидетельствует, по-видимому, не только о его древности, но и важной роли в регуляции метаболических процессов. Глюкагон — полипептид, построенный из одной цепи с моле­кулярной массой около 3500 Да. Кроме альфа-клеток островков Лангерганса глюкагон вырабатывается также в слизистой оболочке кишечника (энтероглюкагон). Функция энтероглюкагона несколько отличается от роли панкреатического глюкагона. Гормоны йстровковых клеток оказывают значительное воздей­ствие на метаболические процессы. Инсулин является анаболиче­ским гормоном с широким спектром действия. Его роль состоит в повышении синтеза углеводов, жиров и белков. Он стимулирует метаболизм глюкозы. Под влиянием инсулина увеличивается про­ницаемость для глюкозы клеток миокарда, скелетных мышц, что усиливает ток глюкозы внутрь клеток и ее обмен. Инсулин стиму­лирует синтез гликогена в печени, снижает глюконеогенез (обра­зование глюкозы из аминокислот), влияет на обмен жира, усиливая способность жировой ткани и печени к накоплению резервов жиров в форме триглицеридов. Действие глюкагона на метаболические процессы осуществля­ется в печени и реализуется через аденилатциклазу и цАМФ. Циклический АМФ, в свою очередь, активизирует ферменты, кон-Пб тролирующие скорость гликогенолиза, глюконеогенеза и липолиза. Основной эффект гормона состоит в усилении гликогенолиза в печени; глюкагон является синэргистом адреналина. Концентрация гормонов поджелудочной железы в плазме кро­ви зависит от поступления глюкозы с пищей, скорости ее окис­ления и от уровня других гормонов, участвующих в регуляции содержания глюкозы. При повышении содержания глюкозы в крови усиливается секреция инсулина, при ее снижении выделяется боль­ше глюкагона. Регуляция эндокринной части поджелудочной железы осуще­ствляется симпатической и парасимпатической нервной системой. Помимо того,- уровень глюкозы, очевидно, изменяется и в самой поджелудочной железе, что используется для регуляции секретор­ной активности клеток. Регуляция секреции инсулина происходит и под влиянием ряда полипептидов, вырабатываемых в желудоч­но-кишечном тракте. Присутствие в нем глюкозы вызывает выброс энтероглюкагона. Этот гормон поступает с кровью к клеткам поджелудочной железы и стимулирует секрецию инсулина. Регуляция секреции глюкагона осуществляется посредством ре­цепторов глюкозы в переднем гипоталамусе, которые выявляют снижение глюкозы в крови. Возможно, в эту цепь взаимодействий включается гормон роста гипофиза. Соматостатин, вырабатываемый дельта-клетками, оказывает ингибирующее влияние на выделение глюкагона. Энтероглюкагон может подавлять секрецию панкреати­ческого глюкагона. Симпатическая стимуляция усиливает секрецию глюкагона. Таким образом, система регуляции секреции инсулина и глюкагона и связанного с функцией этих гормонов уровня глюкозы в крови весьма сложна. У млекопитающих главным источником энергии являются уг­леводы, и инсулин играет весьма значительную роль в процессах регуляции их метаболизма. У птиц в 10—20 раз более высоким является содержание глюкагона — липолитического агента, так как основным источником энергии у этой группы позвоночных являются жиры. При отклонениях уровня глюкозы в крови от нормы наблю­даются явления гипо- или гипергликемии. В норме концентрация глюкозы в крови человека относительно постоянна и составляет около 80 мг/100 мл.

11.Гонады и половые гормоны В гонадах происходит развитие и созревание половых клеток, а также выработка половых гормонов. Процессы развития, созревания половых клеток и размножения значительно различаются у разных позвоночных, в связи с чем на­блюдаются особенности и в механизмах их гормональной регуляции. У рыб, амфибий, рептилий и птиц в яйцах накапливается желток, необходимый для развития эмбриона, которое протекает в большин­стве случаев вне тела самки. Большой сложности достигает репро­дуктивная система млекопитающих (см. гл. 13), у которых развитие эмбриона происходит в теле самки. У большинства видов млекопита­ющих образуется плацента — специальный орган, обеспечивающий развитие плода и вырабатывающий собственные гормоны. В осуществлении функции размножения принимает участие ряд гормонов, однако основное значение имеют половые гормоны, которые относятся к стероидам. Их можно разделить на три основные группы: эстрогены, гестагены и андрогены. Гормоны первых двух групп называют также женскими половыми гормо­нами, важнейшими из них являются эстрадиол, эстрон и про­гестерон. Третья группа — мужские половые гормоны. Из них наиболее важным является тестостерон. Локализация выработки половых гормонов. Этот процесс осу­ществляется стероидогенной тканью гонад, развивающейся, так же как и кора надпочечника, из целомического эпителия. Синтез сте­роидов в этих образованиях происходит сходным путем; в гонадах из прогестерона (центральное звено синтеза) образуются андрогены и эстрогены. Пути синтеза и обеспечивающая их система ферментов обнаружены у всех позвоночных и некоторых групп беспозвоночных животных. Это указывает на значительную древность, стабильность и универсальность половых стероидов, играющих важную роль в обеспечении репродукции и, следовательно, в сохранении вида. Эстрогены и гестагены образуются в женской гонаде и плаценте . (у плацентарных млекопитающих), а андрогены — в так называемых клетках Лейдига (или интерстициальных) в мужской гонаде. В яич­нике половые гормоны образуются в оболочках фолликула. У млеко­питающих, в яичниках которых в ходе цикла на месте лопнувшего фолликула образуется желтое тело (см. разд. 13.9), в этом образова­нии синтезируются прогестины. Небольшие количества андрогенов вырабатываются у особей женского пола; они образуются в яичнике и в коре надпочечника (см. разд. 6.3.2). В семенниках также выра­батываются небольшие количества эстрогенов и гестагенов. Действие половых гормонов. Гормоны, образующиеся в гонадах, способствуют эмбриональной дифференцировке (у млекопитающих) и последующему развитию половых органов. В дальнейшем они определяют половое созревание и развитие разнообразных вторич­ных половых признаков. Половые гормоны регулируют процессы, связанные с синтезом желтка в ооцитах и овуляцией, а у млеко­питающих индуцируют изменения в эндометрии матки, предшест­вующие имплантации яйцеклетки и обеспечивающие нормальное протекание беременности (прогестерон). Совместно с другими гор­монами половые стероиды вызывают изменения молочных желез, необходимые для секреции молока. Они обладают также рядом эффектов вне половой сферы, так называемых экстрагенитальных. Половые гормоны оказывают зна­чительное влияние на ЦНС и половое поведение; они являются важным звеном в механизме саморегуляции гипоталамо-гипофизар-но-гонадной системы. Органами-мишенями стероидных гормонов яв­ляются клетки семенных канальцев, простата, семенные;пузырьки, матка, печень, гипоталамус и др. В крови половые гормонышаходятся в основном в связанном со специфическими белками состоянии. Половая дифференцировка у эмбриона. На ранних этапах эм­бриогенеза млекопитающих (у человека в конце 3-го месяца) мужские гонады приобретают гормональную активность и начинают синтези­ровать андрогены (тестостерон). Образующиеся андрогены обеспечи­вают половую дифференцировку гипоталамуса и формирование ор­ганов половой системы, характерных для мужского пола. В опытах на крысах показано, что если на ранних этапах эмбриогенеза блоки­ровать секрецию тестостерона, у плода-самца развиваются гениталии самки. Если на этих стадиях развития плоду-самке ввести тестосте­рон, происходит частичное развитие гениталий самца. Путем воздей­ствия половыми стероидами на развивающихся эмбрионов ряда рыб получают фенотипических самок из генотипических самцов и наобо­рот. В результате соответствующих воздействий формируются попу­ляции, состоящие только из самок или из стерильных особей. У эм­брионов женского пола в период внутриутробного развития яичники не обладают гормональной активностью. Выработка половых стерои­дов начинается в связи с половым созреванием. Половое созревание. Половые стероиды оказывают значитель­ное влияние на развитие и созревание половых клеток. Эстрогены стимулируют синтез белка вителлогенина в печени, который вклю­чается в ооцит и образует желток, необходимый для роста и развития эмбриона. В опытах на лягушках, в ооцитах которых еще не началось накопление желтка, показано, что введение эстрадиола уже через 12—24 ч приводило к синтезу вителлогенина. Половыми стероидами контролируется развитие весьма разно-обшзных вторичных половых признаков, обеспечивающих процесс оазмножени^ Так, брачный наряд рыб и других животных, развитие ?огов IГдругих образований определяются половыми стероидами. Ее удТе™ия яичников или семенников, ^^ТвоТеко" кями половых гормонов у различных животных (от рыб до млеко-питающ'х) наблюдается7 Кратное развитие вторичных половых признаков самцов (и наоборот). Эти эффекты были четко показаны на птицах в опытах М. М. Завадовского. В период полового созревания усиливается эндокринная актив­ность гонад у девочек и мальчиков. Под влиянием эстрагенов и гестагенов у девочек и адрогенов у мальчиков происходит развитие и созревание половых органов. Тестостерон необходим также для осуществления сперматогенеза. Влияние на матку. У женщин половые гормоны вызывают изменения миометрия, характерные для менструального цикла. Эс­трогены обусловливают пролиферативную фазу, во время которой утолщается слизистая оболочка и происходит развитие желез эндо­метрия. После овуляции под влиянием прогестерона железы эндо­метрия вступают в секреторную фазу, что создает возможность имплантации оплодотворенной яйцеклетки. В дальнейшем благодаря прогестерону поддерживается нормальное развитие плода. Экстрагенитальные эффекты половых гормонов. Эти эффекты разнообразны. Так, андрогены обладают анаболитическим эффек­том. Они усиливают синтез белка, чем объясняется, в частности, значительное развитие мускулатуры у самцов. Для прогестерона характерен катаболический эффект. Прогестерон усиливает основ­ной обмен, что сопровождается повышением пороговых температур потоотделения и расширением сосудов. Поэтому прогестерон повы­шает базальную температуру тела, т. е. температуру утром, в покое. Во взаимодействии с другими гормонами половые стероиды влияют на рост костей. Под их действием приостанавливается рост благодаря окостенению эпифизарных хрящей. При недостаточности андрогенов гормон роста продолжает влиять на неокостеневшие эпифизы,усиливая рост, что приводит к развитию евнухоидного гигантизма. Уровень половых гормонов в половом цикле. Уровень половых гормонов в половом цикле у позвоночных животных подвержен значительным колебаниям. В процессе развития ооцитов под вли­янием гонадотропина гипофиза усиливается секреция эстрадиола, который приводит к синтезу вителлогенина. Этот белок поступает в кровь и под влиянием ГТГ включается в ооцит. Таким образом образуется желток. После завершения накопления желтка уровень эстрадиола снижается. Гонадотропный гормон в более низких кон­центрациях периодически поступает в кровь. При приближении овуляции из гипофиза выводится в кровь много ГТГ, который индуцирует выработку прогестерона. Овуляция осуществляется с участием прогестерона. У самцов под влиянием гонадотропина повышается уровень тестостерона; этот гормон необходим при осуществлении спермато­генеза и спермиации. Уровень половых гормонов оказывает влияние на секрецию гонадотропина гипофизом и на продукцию гонадотро-пин-рилизинг-гормона в гипоталамусе; взаимодействия осуществля­ются с помощью механизма отрицательной обратной связи. У низших позвоночных отсутствует такое разделение функций гонадотропных гормонов, как это наблюдается для ФСГ и ЛГ у млекопитающих. У рептилий обнаружены ФСГ и ЛГ, и сфера их действия близка к тому, что происходит у млекопитающих. Концентрация половых стероидов существенно меняется на про­тяжении менструального цикла у женщины. Во второй трети цикла уровень эстрогенов резко повышается, а затем падает. В конце цикла повышается уровень прогестерона . Секреция женских половых гормонов регулируется гонадотропными гормонами гипофиза — ФСГ и ЛГ. Под влиянием ФСГ в начале менструального цикла происходит созревание первичного фолликула, увеличивается концентрация эстрадиола. Секреция эс­традиола регулируется совместным влиянием ЛГ и ФСГ. В середине Цикла уровень ЛГ резко повышается, что приводит к разрыву фол­ликула, овуляции и превращению фолликула в желтое тело. Во время овуляции происходит также повышение уровня ФСГ. Оче­видно, ФСГ принимает участие в регуляции этого процесса. Латен­тный период со времени пика ЛГ до овуляции составляет от 24 до 36 ч. Желтое тело под влиянием ЛГ вырабатывает прогестерон, концентрация которого резко повышается сразу же после овуляции. Регуляция секреции ФСГ и ЛГ осуществляется рилизинг-гор-моном ЛГ-РГ. Этот гормон (или ГТГ-РГ) регулирует секрецию ЛГ и ФСГ. Секреция ЛГ-РГ, как показано на обезьянах, носит эпизодический характер. Фазы усиленной секреции длительностью в не­сколько минут разделены 1—1,5-часовыми интервалами; в это время секреция ЛГ-РГ незначительна. Под влиянием импульсной секреции ЛГ-РГ в преовуляторной фазе скорость секреции ФСГ нарастает, а по мере созревания фолликула увеличивается секреция эстрогена. В опытах доказана роль эстрогенов в стимуляции выведения гона-дотропинов, т. е. в этот период существует положительная обратная связь. После овуляции происходит повышение уровня прогестерона. В этот период два половых гормона — эстрадиол и прогестерон — обеспечивают механизм отрицательной обратной связи, т. е. повы­шение уровня этих гормонов приводит к торможению выделения ФСГ и ЛГ и, таким образом, препятствует созреванию На секрецию ЛГ-РГ существенное влияние оказывает состояние различных отделов ЦНС, прежде всего лимбической системы и преоптической области гипоталамуса. В связи с этим понятны вли­яния разнообразных факторов (стресс) на менструальный цикл. У многих животных осуществление различных этапов полового цикла связано с изменением продолжительности фотопериода (светового дня) и показателей температуры; эти влияния также, очевидно, осуществляются через упомянутые структуры нервной системы. Торможение овуляции. Торможение овуляции может быть до­стигнуто путем введения экзогенных эстрогена и прогестерона, ко­торые в начале цикла тормозят секрецию ЛГ-РГ посредством от­рицательной обратной связи. В результате не возникает пика ЛГ и не происходит овуляции. Этот механизм используют при приме­нении некоторых контрацептивных средств. Эструс. У млекопитающих, не относящихся к приматам, ову­ляция сопровождается изменениями во влагалище и особым половым поведением. Такое состояние называют течкой (эструсом). В это время из фолликула выделяется яйцеклетка, которая способна к оплодотворению. У женщин кровотечение во время овуляции отсутствует. Кро­вотечение связано с разрушением части эндометрия матки. Оно возникает через две недели после овуляции и происходит при резком снижении уровня половых гормонов. составляющей у человека 98 % всей массы железы, вырабатывается пищеварительный сок, который поступает в двенадцатиперстную кишку (см. разд. 11.2.3) и содержит ферменты, необходимые для расщепления белков, жиров и углеводов. В островках Лангерганса синтезируются гормоны, регулирующие метаболические процессы, в особенности углеводный обмен. В процессе эволюции эндокринная часть возникла раньше эк-зокринной, так что вначале поджелудочная железа не имела ком­пактного строения. У ланцетника в эпителии слизистой оболочки кишки есть клетки, гомологичные экзокринной и эндокринной ча­стям поджелудочной железы. Эти клетки разобщены. У круглоротых (миноги) образуются островки железистой ткани, отделяющиеся от эпителия кишечника. У костистых рыб эндокринная ткань пред­ставлена островками (тельца Брокмана), обособленными от экзо­кринной ткани поджелудочной железы. У других позвоночных жи­вотных эндокринная ткань в виде мелких включений расположена среди экзокринной ткани поджелудочной железы и составляет только 1—3 % от ее массы. Регуляция уровня полового гормона у мужчин. Уровень муж­ских половых гормонов довольно постоянен и регулируется с по­мощью обычного механизма отрицательной обратной связи. Повы­шение уровня тестостерона тормозит секрецию ЛГ, по-видимому» путем торможения выделения соответствующего рилизинг-гормоВД в гипофизотропной зоне (рис. 6.12).Фолликулостимулирующий гормон регулирует дифференциров-ку клеток семенников и образование первичных сперматогониев. В этих клетках находятся рецепторы ФСГ, которые способствуют выработке андрогенсвязывающего белка (АСБ). Комплекс тестосте­рона с этим белком оказывает влияние на сперматогенез. В клетках семенников предполагают выработку полипептида ингибина, котог; рый снижает секрецию ФСГ и ЛГ-РГ.

12. Морфологический и химический состав крови. Кровь состоит из жидкой части плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов приходится 40 – 45%, на долю плазмы – 55 – 60% от объема крови. Это соотношение получило название гематокритного соотношения, или гематокритного числа. Часто под гематокритным числом понимают только объем крови, приходящийся на долю форменных элементов.

Плазма крови

В состав плазмы крови входят вода (90 – 92%) и сухой остаток (8 – 10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся белки, которые составляют 7 – 8%. Белки представлены альбуминами (4,5%), глобулинами (2 – 3,5%) и фибриногеном (0,2 – 0,4%).

Белки плазмы крови выполняют разнообразные функции: 1) коллоидно-осмотический и водный гомеостаз; 2) обеспечение агрегатного состояния крови; 3) кислотно-основной гомеостаз; 4) иммунный гомеостаз; 5) транспортная функция; б) питательная функция; 7) участие в свертывании крови.

Альбумины составляют около 60% всех белков плазмы. Благодаря относительно небольшой молекулярной массе (70000) и высокой концентрации альбумины создают 80% онкотического давления. Альбумины осуществляют питательную функцию, являются резервом аминокислот для синтеза белков. Их транспортная функция заключается в переносе холестерина, жирных кислот, билирубина, солей желчных кислот, солей тяжелых металлов, лекарственных препаратов (антибиотиков, сульфаниламидов). Альбумины синтезируются в печени.

Глобулины подразделяются на несколько фракций: a -, b - и g -глобулины.

a -Глобулины включают гликопротеины, т.е. белки, простетической группой которых являются углеводы. Около 60% всей глюкозы плазмы циркулирует в составе гликопротеинов. Эта группа белков транспортирует гормоны, витамины, микроэлементы, липиды. К a -глобулинам относятся эритропоэтин, плазминоген, протромбин.

b -Глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов. К этой фракции относится белок трансферрин, обеспечивающий транспорт железа, а также многие факторы свертывания крови.

g -Глобулины включают в себя различные антитела или иммуноглобулины 5 классов: Jg A, Jg G, Jg М, Jg D и Jg Е, защищающие организм от вирусов и бактерий. К g -глобулинам относятся также a и b – агглютинины крови, определяющие ее групповую принадлежность.

Глобулины образуются в печени, костном мозге, селезенке, лимфатических узлах.

Фцбриноген – первый фактор свертывания крови. Под воздействием тромбина переходит в нерастворимую форму – фибрин, обеспечивая образование сгустка крови. Фибриноген образуется в печени.

Белки и липопротеиды способны связывать поступающие в кровь лекарственные вещества. В связанном состоянии лекарства неактивны и образуют как бы депо. При уменьшении концентрации лекарственного препарата в сыворотке он отщепляется от белков и становится активным. Это надо иметь в виду, когда на фоне введения одних лекарственных веществ назначаются другие фармакологические средства. Введенные новые лекарственные вещества могут вытеснить из связанного состояния с белками ранее принятые лекарства, что приведет к повышению концентрации их активной формы.

К органическим веществам плазмы крови относятся также небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатинин, аммиак). Общее количество небелкового азота в плазме, так называемого остаточного азота, составляет 11 – 15 ммоль/л (30 – 40 мг%). Содержание остаточного азота в крови резко возрастает при нарушении функции почек.

В плазме крови содержатся также безазотистые органические вещества: глюкоза 4,4 – 6,6 ммоль/л (80 – 120 мг%), нейтральные жиры, липиды, ферменты, расщепляющие гликоген, жиры и белки, проферменты и ферменты, участвующие в процессах свертывания крови и фибринолиза. Неорганические вещества плазмы крови составляют 0,9 – 1%. К этим веществам относятся в основном катионы Nа+, Са2+, К+, Mg2+ и анионы Сl-, НРО42-, НСО3-. Содержание катионов является более жесткой величиной, чем содержание анионов. Ионы обеспечивают нормальную функцию всех клеток организма, в том числе клеток возбудимых тканей, обусловливают осмотическое давление, регулируют рН.

В плазме постоянно присутствуют все витамины, микроэлементы, промежуточные продукты метаболизма (молочная и пировиноградная кислоты).

Кровь состоит из форменных элементов (42-46%) — эритроцитов (красных кровяных клеток), лейкоцитов (белых кровяных клеток) и тромбоцитов (кровяных пластинок) и жидкой части — плазмы (54-58%). Плазма крови, лишенная фибриногена, называется сывороткой. У взрослого человека общее количество крови составляет 5-8%массы тела, что соответствует 5-6л. Объем крови принято обозначать по отношению к массе тела (мл • кг1). В среднем, он равен у мужчин — 65 мл • кг1, у женщин — 60 мл • кг1 и у детей — около 70 мл • кг1. Количество эритроцитов в крови примерно в тысячу раз больше, чем лейкоцитов, и в десятки раз выше, чем тромбоцитов. Последние по своим размерам в несколько раз меньше, чем эритроциты. Поэтому эритроциты составляют более 90% всего объема, приходящегося на долю форменных элементов крови. Выраженное в процентах отношение объема форменных элементов к общему объему крови называется гематокритом. У мужчин гематокрит составляет в среднем—46%, у женщин—42%Кровь выполняет в организме целый ряд физиологических функций. 1)Транспортная функция крови заключается в переносе всех необходимых для жизнедеятельности организма веществ (питательных веществ, газов, гормонов, ферментов, метаболитов). 2)Дыхательная функция состоит в доставке кислорода от легких к тканям и углекислого газа от тканей к легким. Кислород переносится преимущественно эритроцитами в виде соединения с гемоглобином — оксигемоглобином (НвО2), углекислый газ — плазмой крови в форме бикарбонатных ионов (НСО3~). В обычных условиях при дыхании воздухом 1 г гемоглобина присоединяет 1.34 мл кислорода, а так как в одном литре крови содержится 140-160 г гемоглобина, то количество кислорода в нем составляет около 200 мл; эту величину принято называть кислородной емкостью крови 3)Питательная функция крови обусловлена переносом аминокислот, глюкозы, жиров, витаминов, ферментов и минеральных веществ от органов пищеварения к тканям, системам и депо 4)Терморегуляторная функция обеспечивается участием крови в переносе тепла от органов и тканей, в которых оно вырабатывается, к органам, отдающим тепло, что и поддерживает температурный гомеостаз. 5)Выделительная функция направлена на перенос продуктов обмена (мочевина, креатин, индикан, мочевая кислота, вода, соли и др.) отмест их образования к органам выделения (почки, легкие, потовые и слюнные железы). 6)Защитная функция формирование иммунитета, который может быть как врожденным, так и приобретенным. Различают также тканевой и клеточный иммунитет. Первый из них обусловлен выработкой антител в ответ на поступление в организм микробов, вирусов, токсинов, ядов, чужеродных белков; второй связан с фагоцитозом, в котором ведущая роль принадлежит лейкоцитам, активно уничтожающим попадающие в организм микробы и инородные тела, а также собственные отмирающие и мутагенные клетки. 7)Регуляторная функция гуморальная (перенос кровью гормонов, газов, минеральных веществ), и рефлекторной регуляции, связанной с влиянием крови на интерорецепторы сосудов.

14. Тромбоциты— это мелкие, безъядерные кровяные пластинки (бляшки Биццоцери) неправильной формы диаметром 2-5 микрон. Несмотря на отсутствие ядра, тромбоциты обладают активным метаболизмом и являются третьими самостоятельными живыми клетками крови. Продолжительность жизни тромбоцитов составляет 8-12 дней. Тромбоцитам принадлежит ведущая роль в свертывании крови.Недостаток тромбоцитов в крови —тромбопения— наблюдается при некоторых заболеваниях и выражается в повышенной кровоточивости.

СВЕРТЫВАНИЕ Жидкое состояние крови и замкнутость кровеносного русла являются необходимыми условиями жизнедеятельности организма. Эти условия создает система свертывания крови (система гемокоагуляции), сохраняющая циркулирующую кровь в жидком состоянии и предотвращающая ее потерю через поврежденные сосуды постредством образования кровяных тромбов; остановка кровотечения называется гемостазом. Cвертывание крови проходит три фазы: 1) образование протромбиназы, 2) образование тромбина, 3) образование фибрина. Образование протромбиназы осуществляется под влиянием тромбопластина (тромбокиназы), представляющего собой фосфолипиды разрушающихся тромбоцитов, клеток тканей и сосудов. Тромбопластин формируется при участии ионов Са2+ и некоторых плазменных факторов свертывания крови. Вторая фаза свертывания крови характеризуется превращением неактивного протромбина кровяных пластинок под влиянием протромбиназы в активный тромбин. Протромбин является глю-копротеидом, образуется клетками печени при участии витамина К. В третьей фаэе свертывания из расгворимого фибриногена крови, активированного тромбином, образуется нерастворимый белок фибрин, нити которого образуют основу кровяного сгустка (тромба), прекращающего дальнейшее кровотечение. Фибрин служит также структурным материалом при заживлении ран. Фибриноген представляет собой самый крупномолекулярный белокплазмы и образуется в печени

Противосвертывающая система крови В здоровом организме, особенно при заболеваниях, существует угроза внутрисосудистого тромбообразования. Однако кровь остается жидкой, так как существует сложный физиологический механизм, обуславливающий резистивность организма против внутрисосудистого свертывания и тромбообразования. Это противосвертывающая система крови. Это сложная система, основу действия которой составляют химические ферментативные реакции между факторами свертывающей и пртивосвертывающей систем. Вещества, препятствующие свертыванию крови, называются антикоагулянтами. Естественные антикоагулянты вырабатываются и содержатся в организме. Они бывают прямого и непрямого действия. К антикоагулянтам прямого действия относится, например, гепарин (образуется в печени). Гепарин препятствует действию тромбина на фибриноген и угнетает активность - инактивирует целый ряд других факторов свертывающей системы. Антикоагулянты непрямого действия угнетают образование активных факторов свертывания. Работа свертывающей и противосвертывающей систем, их взаимодействие в организме находятся под контролем центральной нервной системы.

15. Эритроциты - эластичны, что помогает проходить им по узким капиллярам. Диаметр эритроцита человека 7-8 мкм, а толщина - 2-2,5 мкм. Отсутствие ядра и форма двояковогнутой линзы (поверхность двояковогнутой линзы в 1,6 раза больше поверхности шара) увеличивают поверхность эритроцитов, а также обеспечивают быструю и равномерную диффузию кислорода внутрь эритроцита. В крови человека и высших животных молодые эритроциты содержат ядра. В процессе созревания эритроцитов ядра исчезают. Общая поверхность всех эритроцитов человека более 3000 м кв., что в 1500 раз превышает поверхность его тела. Общее количество эритроцитов. Находящихся в крови человека, огромно. Оно примерно в 10 тыс. раз больше населения нашей планеты. Если расположить все эритроциты человека в один ряд, то получилась бы цепочка длиной около 150000 км; если положить эритроциты один на другой, то образовалась бы колонна высотой, превосходящей длину экватора земного шара (50000-60000 км). В 1 мм куб. содержится от 4 до 5 млн. эритроцитов ( у Ж. - 4,0-4,5 млн., у М.-4,5-5,0 млн.). Количество эритроцитов не строго постоянно. Оно может значительно увеличиваться при недостатке кислорода на больших высотах, при мышечной работе. У людей, живущих в высокогорных районах, эритроцитов примерно на 30% больше, чем у жителей морского побережья. При переезде из низменных районов в высокогорные количество эритроцитов в крови увеличивается. Когда же потребность в кислороде уменьшается количество эритроцитов в крови снижается. Средняя продолжительность эритроцитов 100- 120 суток. Разрушаются старце эритроциты в селезенке и частично в печени. Основная функция эритроцитов заключается в переносе О2 от легких ко всем клеткам тела. Находящийся в эритроцитах гемоглобина легко соединяются с О2 и легко отдает его в тканях. Важная роль гемоглобина и в удалении углекислого газа из тканей. Таким образом эритроциты поддерживают относительное постоянство газового состава крови. В состав эритроцитов входит белковое вещество - гемоглобин (более 90%), придающее крови красный цвет. Гемоглобин состоит из белковой части глобина и небелкового вещества - гема (простетическая группа), содержащего двухвалентное железо. В капиллярах легких гемоглобин соединяется с кислородом, образуя оксигемоглобин. Своей способности соединяться с кислородом гемоглобин обязан гему, а точнее, присутствию в его составе двухвалентного железа. В капиллярах тканей оксигемоглобин легко распадается с освобождением кислорода и гемоглобина. Этому способствует высокое содержание в тканях углекислого газа. Оксигемоглобин имеет ярко-красный цвет, а гемоглобин темно-красный. Этим объясняется различие в окраске венозной и артериальной крови. Оксигемоглобин обладает свойствами слабой кислоты, что имеет важное значение в поддержании постоянства реакции крови (рН). Наиболее прочное соединение гемоглобина образует с угарным газом (СО). С ним гемоглобин образует соединение легче, чем с кислородом. Поэтому при содержании в воздухе 0,1% угарного газа больше половины гемоглобина крови соединяется с ним, в связи с чем клетки и ткани не обеспечиваются необходимым количеством кислорода. В результате кислородного голодания появляются мышечная слабость, потеря сознания, судороги и может наступить смерть. Первая помощь при отравлении угарным газом - обеспечить приток чистого воздуха, напоить пострадавших крепким чаем, а дальше необходима медицинская помощь. Лейкоциты, или белые кровяные тельца, - это бесцветные клетки, содержащие ядра разнообразной формы. В 1 мм куб крови здорового человека содержится около 6-8тыс лейкоцитов. При рассмотрении в микроскоп мазка окрашенной крови можно заметить, что лейкоциты имеют разнообразную форму. Различают две группы лейкоцитов: зернистые и незернистые. У первых в цитоплазме содержатся мелки зерна (гранулы), окрашивающиеся разными красителями в синий, красный или фиолетовый цвет..

Янский выделил четыре группы крови, встречающиеся у людей. Классификация основана на сравнении антигенов, находящихся в эритроцитах (агглютиногенов), и антител, имеющихся в плазме (агглютининов). Выделены главные агглютиногены А и В и соответствующие агглютинины альфа и бета. Агглютиноген А и агглютинин альфа, а также В и бета называются одноименными. В крови человека не могут содержаться одноименные вещества. При встрече их возникает реакция агглютинации, т. е. склеивания эритроцитов, а в дальнейшем и разрушение (гемолиз). В этом случае говорят о несовместимости крови. В эритроцитах крови, отнесенной к I (0) группе, не содержится агглютиногенов, в плазме же имеются агглютинины альфа и бета. В эритроцитах II (А) группы имеется агтлютиноген А, а в плазме — агглютинин бета. Для III (В) группы крови характерно наличие агглютиногена В в эритроцитах и агглютинина альфа в плазме. IV (АВ) группа крови характеризуется содержанием агглютиногенов Аи В и отсутствием агглютининов. Переливание несовместимой крови вызывает гемотрансфузионный шок— тяжелое патологическое состояние, которое может закончиться гибелью человека Людей с I группой называют универсальными донорами. Людям IV группы можно переливать одноименную кровь, атакже кровь всех остальных групп, поэтому этих людей называют универсальными реципиентами. Кровь людей II и III групп можно переливать людям с одноименной, а также с IУ группой. Важное значение при переливании крови имеет совместимость по резус-фактору. Впервые он был обнаружен в эритроцитах обезьян-макак породы «резус». Впоследствии оказалось, что резус-фактор содержится в эритроцитах 85% людей (резус-положительная кровь) и лишь у 15% людей отсутствует (резус-отрицательная кровь). При повторном переливании крови реципиенту, несовместимому по резус-фактору с донором, возникают осложнения, связанные с агглютинацией несовместимых донорских эритроцитов. Это является результатом воздействия специфических антирезус-агглютининов, вырабатываемых ретикуло-эндотелиальной системой после первого переливания. Резус-конфликт — несовместимость групп крови по резус-фактору между резус-отрицательной (Rh−) матерью и резус-положительным (Rh+) ребенком.[1] [2]

Он приводит к распаду (гемолизу) красных кровяных телец (эритроцитов) у ребёнка — гемолитической желтухе новорожденных.

16.Лейкоциты по функциональным и морфологическим признакам представляют собой обычные клетки, содержащие ядро и протоплазму. Лейкоциты неоднородны по своему строению: в одних из них протоплазма имеет зернистое строение (гранулоциты), в других зернистости нет (агранулоциты). Гранулоциты составляют 65-70% всех лейкоцитов и делятся в зависимости от способности окрашиваться нейтральными, кислыми или основными красками на нейтрофилы, эозинофилы и базофилы.Агранулоциты составляют 30-35% всех белых кровяных клеток и включают в себя лимфоциты и моноциты. Функции различных лейкоцитов разнообразны.Процентное соотношение различных форм лейкоцитов в крови называется лейкоцитарной формулой. Общее количество лейкоцитов и лейкоцитарная формула не являются постоянными. Увеличение числа лейкоцитов в периферической крови называется лейкоцитозом, а уменьшение— лейкопенией. Продолжительность жизни лейкоцитов составляет 7-10 дней.Нейтрофилы составляют 60-70% всех лейкоцитов и являются наиболее важными клетками зашиты организма от бактерий и их токсинов. Проникая через стенки капилляров, нейтрофилы попадают в межтканевые пространства, где осуществляется фагоцитозЭозинофилы (1-4% от общего числа лейкоцитов) адсорбируют на свою поверхность антигены, многие тканевые вещества и токсины белковой природы, разрушая и обезвреживая их. Эозинофилы принимают участие в предупреждении развития аллергических реакций.Базофилы составляют не более 0.5% всех лейкоцитов и осуществляют синтез гепарина, входящего в антисвертываюшую систему крови. Участвуют в синтезе ряда биологически активных веществ и ферментов (гистамин, серотонин, РНК, фосфотаза, липаза, пероксидаза).Лимфоциты (25-30% от числа всех лейкоцитов) играют важнейшую роль впроцессах образования иммунитета организма, а также активно участвуют в нейтрализации различных токсических веществ.Главным фактором иммунологической системы крови являются Т- и В-лимфоциты. Т-лимфоциты прежде всего выполняют роль строгого иммунного контролера. Вступив в контакт с любым антигеном, они надолго запоминают его генетическую структуру и определяют программу биосинтеза антител (иммуноглобулинов), которая осуществляется В-лимфоцитами. В-лимфоциты, получив программу биосинтеза иммуноглобулинов, превращаютсяв плазмоциты, являющиеся фабрикой антител.В Т-лимфоцитах происходит синтез веществ, активирующих фагоцитоз и защитные воспалительные реакции. Они следят за генетической чистотой организма, препятствуя приживлению чужеродных тканей, активируя регенерацию и уничтожая отмершие или мутантные (в том числе и опухолевые) клетки собственного организма. Т-лимфоцитам принадлежит роль регуляторов кроветворной функции, заключающаяся в уничтожении чужеродных стволовых клеток костного мозга. Лимфоциты способны синтезировать бета— и гамма-глобулины, входящие в состав антител.Моноциты (4-8%) являются самыми крупными клетками белой крови, которые называют макрофагами. Они обладают самой высокой фагоцитарной активностью по отношению к продуктам распада клеток и тканей, обезвреживают токсины, образующиеся в очагах воспаления. Моноциты принимают участие в выработке антител. К макрофагам, наряду с моноцитами, относят ретикулярные и эндотелиальные клетки печени, селезенки, костного мозга и лимфатических узлов.

Лейкоцитарная формула - процентное соотношение количества нейтрофилов, лимфоцитов, эозинофилов, базофилов и моноцитов.

Изменения лейкоцитарной формулы неспецифичны: они могут иметь сходный характер при разных заболеваниях или, напротив, возможны разные изменения при одной и той же патологии у разных больных.

Лейкоцитарная формула имеет возрастные особенности, поэтому её сдвиги следует оценивать с учётом возрастной нормы.

Варианты изменения (сдвига) лейкоцитарной формулы

Сдвиг влево [в крови увеличено количество палочкоядерных нейтрофилов, возможно появление метамиелоцитов (юных), миелоцитов] может указывать на следующие состояния:

острые инфекционные заболевания;

физическое перенапряжение;

ацидоз и коматозные состояния.

Сдвиг вправо (в крови появляются гиперсегментированные гранулоциты) может свидетельствовать о следующих состояниях:

мегалобластной анемии;

болезнях почек и печени;

состоянии после переливания крови.

Значительное омоложение клеток происходит в таких случаях:

• так называемый бластный криз - наличие только бластных клеток (острые лейкозы, метастазы злокачественных новообразований, обострение хронических лейкозов) ;

• "провал" лейкоцитарной формулы - бластные клетки, промиелоциты и зрелые клетки, промежуточных форм нет (характерно для дебюта острого лейкоза).

17.Кровеносная система. В нашем организме кровь непрерывно движется по замкнутой системе сосудов в строго определенном направлении. Это непрерывное движение крови называется кровообращением. Оно зависит от работы сердца, которое служит основным двигателем крови. Сердце нагнетает кровь в сосуды, обеспечивает ее движение и возвращение к самому сердцу. Строение и функции кровеносных сосудов. Стенки сосудов состоят из трех слоев, за исключением стенок самых мелких сосудов. Внутренняя поверхность сосудов покрыта тонким слоем плоских эпителиальных клеток. Этот слой удивительно гладкий, что уменьшает сопротивление и способствует беспрепятственному движению крови. Средний слой толще внутреннего. Он состоит из эластических волокон и клеток гладкой мышечной ткани. Благодаря сокращению мышечных клеток может меняться просвет кровеносных сосудов. Наружный слой образован рыхлой соединительной тканью. В наружном слое стенок сосудов проходят нервы, управляющие просветом сосудов. По выполняемой функции сосуды разделяются на артерии, вены и капилляры. Артерии - это сосуды, по которым кровь течет от сердца. Они выполняют функцию доставки крови к органам. Стенки артерий содержат много мышечных клеток, они очень эластичны (рис. 34). Это позволяет им выдерживать давление крови, выталкиваемой из сердца. Вены - это сосуды, по которым кровь течет к сердцу. Стенки вен содержат мало мышечных и эластических элементов. Стенки вен менее упруги, чем стенки артерий, но более растяжимы. В тонких сосудах - капиллярах происходит обмен жидкостями, питательными веществами и газами между кровью и тканями. Стенка капилляров состоит из одного слоя плоских клеток. В мембранах этих клеток имеются многочисленные мельчайшие отверстия, которые облегчают прохождение через стенку капилляров веществ, участвующих в обмене. В местах перехода мельчайших артерий в капилляры имеются скопления мышечных клеток. Сокращения этих клеток меняют просвет сосудов, открывают или прекращают поступление крови в капилляры. Обычно у человека в состоянии покоя открыто для кровотока только 20-30% капилляров. Во время усиленной работы органа открываются в кровоток дополнительные капиляры. Этот механизм особенно хорошо развит у спортсменов. Большой и малый круги кровообращения. Движение крови по двум замкнутым системам - большому и малому кругам кровообращения было открыто в XVII веке английским ученым Уильямом Гарвеем. Этот великий английский ученый явился родоначальником науки физиологии. Большой круг кровообращения. Путь крови от левого желудочка до правого предсердия называется большим кругом кровообращения. Из левого желудочка кровь" насыщенная кислородом (артериальная, яркая алая кровь), нагнетается в самый широкий сосуд - аорту. Оттуда кровь по артериям поступает в различные участки тела: мозг, органы брюшной полости, туловище, конечности. Протекая через капилляры большого круга кровообращения, кровь отдает кислород, присоединяет углекислый газ. В вены поступает кровь, бедная кислородом (венозная кровь по сравнению с артериальной более темная). Венозная кровь из туловища, нижних конечностей, органов брюшной полости через крупный сосуд - нижнюю полую вену попадает в правое предсердие. Сюда же через верхнюю полую вену поступает венозная кровь от головы, шеи, рук. Малый круг кровообращения. Путь крови от правого желудочка до левого предсердия значительно короче ранее описанного, и поэтому он получил название малого круга кровообращения. Из правого желудочка венозная кровь поступает в крупный сосуд - легочную артерию. В легких легочная артерия разветвляется на густую сеть капилляров, оплетающих дыхательные пузырьки. Венозная кровь, проходя через капилляры легких, насыщается кислородом, превращается в артериальную. По легочным венам в левое предсердие течет уже артериальная кровь. Подчеркнем, что малый круг является исключением и в остальных венах организма течет венозная, а в артериях ~ артериальная кровь. Правый и левый желудочки нагнетают кровь в сосуды одновременно, и она движется сразу по обоим кругам кровообращения. Лимфатическая система. Органы и ткани нашего тела пронизаны не только кровеносными, но и лимфатическими сосудами. В них находится прозрачная жидкость - лимфа. По своему составу лимфа отличается от крови тем, что в ней отсутствуют эритроциты, тромбоциты, а концентрация белков ниже, чем в плазме крови. В лимфе содержатся в большом количестве лимфоциты. Из капилляров лимфа поступает в лимфатические сосуды, которые несут ее в один большой сосуд, называемый грудным протоком. Из него лимфа изливается в крупные вены шеи. Лимфа движется в одном направлении благодаря сокращениям стенок лимфатических сосудов и клапанам, открывающимся только в сторону верхней полой вены. По ходу лимфатических сосудов в разных отделах нашего тела находятся специальные образования - лимфатические узлы. Наиболее важная функция лимфатической системы заключается в возвращении белков, воды и солей из тканей в кровь. Лимфатическая система участвует во всасывании из кишечника жиров, в создании иммунитета, в защите от болезнетворных микроорганизмов

Сосудодвигательные центры Сужение или расширение сосудов наступает под влиянием импульсов из центральной нервной системы. Было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального русла, - сосудодвигательный центр находящийся в продолговатом мозгу. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или у кошки выше четверохолмия, то кровяное давление не изменяется. Если же перерезать мозг между продолговатым и спинным, максимальное давление крови в сонной артерии понижается с нормальных 100 - 120 до 60 - 70 мм рт. ст. Отсюда следует, что сосудосуживающий центр локализован в продолговатом мозгу, и что он находится в состоянии длительного постоянного возбуждения (тонуса). Устранение его влияния вызывает расширение сосудов и падение артериального давления. Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне 4 желудочка и состоит из двух отделов: прессорного и депрессорного. Раздражение первого вызывает сужение артерии и подъем кровяного давления, а раздражение второго - расширение артерий и падение давления. Импульсы от сосудосуживающего центра продолговатого мозга поступают к нервным центрам симпатической нервной системы, расположенными в боковых рогах спинного мозга. 0ни образуют сосудосуживающие центры, связанные с сосудами отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол. Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших участков промежуточного мозга в области гипоталамуса, в котором расположены высшие центры вегетативной нервной системы, вызывает сужение артерий и артериол и повышение кровяного давления. Рефлекторная регуляция сосудистого тонуса Как уже указывалось выше, артерии и артериолы постоянно находятся в состоянии тонуса вследствие поступления к ним импульсов от сосудодвигательного центра по симпатическим нервам. Артериальный тонус обусловлен тонусом сосудодвигательного центра продолговатого мозга. Тонус же этого центра зависит от импульсов, приходящих с периферии от рецепторов, расположенных в некоторых сосудистых областях и на поверхности тела, а также от влияния гуморальных (химических) раздражителей, непосредственно действующих на нервный центр. Следовательно, тонус сосудодвигательного центра имеет как рефлекторное, так и гуморальное происхождение. Рефлекторные изменения тонуса артерий - сосудистые рефлексы - могут быть по классификации В. Н. Черниговского разделены на две группы: собственные и сопряженные рефлексы. Собственные сосудистые рефлексы вызываются импульсами от рецепторов сами сосудов. Морфологическими исследованиями обнаружено большое число таких рецепторов. Особенно важное физиологическое значение имеют рецепторы, сосредоточенные в дуге аорты и в области разветвления сонной на внутреннюю и наружную. Эти участки сосудистой системы, обильно снабженные рецепторными элементами, получили название главных сосудистых рефлексогенных зон. Рецепторы, расположенные в дуге аорты, являются окончаниями центростремительных волокон, Электрическое раздражение центрального конца этого нерва влечет за собой падение кровяного давления вследствие рефлекторного увеличения тонуса ядра блуждающего нерва и рефлекторного угнетения тонуса сосудосуживающего центра. В рёзультате сердечная деятельность тормозится, а сосуды внутренних органов расширяются. Если же у подопытного животного, например у кролика, перерезаны блуждающие нервы, то раздражение депрессора вызывает только рефлекторное расширение сосудов, не вызывая замедления сердечного ритма. В рефлексогенной зоне каротидного синуса расположены рецепторы, от которых идут центростремительные нервные волокна, образующие нерв Геринга, или нерв каротидного синуса. Этот нерв вступает в мозг в составе языкоглоточного нерва. Рефлексогенные зоны аорты и каротидного синуса имеют важное значение в регуляции постоянства кровяного давления. В нормальных физиологических условиях они препятствуют повышению артериального давления, почему их и называют «обуздывателями кровяного давления». Рецепторы сосудистых рефлексогенных зон имеют значение и для восстановления снизившегося давления крови. Понижение артериального давления вследствие, например, уменьшения количества крови в организме (при кровопотерях) или ослабления деятельности сердца, или, наконец, при оттоке крови в избыточно расширившиеся кровеносные сосуды какого-нибудь крупного органа ведет к тому, что прессорецепторы дуги-аорты и сонных артерий раздражаются менее интенсивно, чем при нормальном давлении крови. «Обуздывающее» действие депрессорных и синусных нервов на кровяное давление слабеет, сосуды суживаются, работа сердца усиливается и давление крови несколько повышается. Рефлекторная регуляция кровяного давления осуществляется не только вследствие возбуждения сосудистых прессорецепторов, но и вследствие возбуждения ^хеморецепторов, чувствительных к изменениям химического состава крови. Такие хеморецепторы сосредоточены в артериальном тельце, расположенном в восходящей части аорты, в ее наружном слое - каротидном тельце, расположенном в разветвлении общей сонной артерии. Хеморецепторы чувствительны к СО2 и недостатку кислорода в крови; они раздражаются также окисью углерода, цианидами, никотином. От этих рецепторов возбуждение передается по центростремительным нервным волокнам к сосудодвигательному центру и вызывает повышение его тонуса. В результате сосуды суживаются и кровяное давление повышается, Одновременно с этим происходит возбуждение дыхательного центра. Таким образом, раздражение хеморецепторов аорты и сонной артерии вызывает сосудистые прессорные рефлексы, т, е. такие, при которых вследствие сужения артериального русла происходит повышение давления, а раздражение прессорецепторов вызывает депрессорные рефлексы, т. е. такие, при которых вследствие расширения артериального русла происходит понижение кровяного давления. Сопряженные сосудистые рефлексы, проявляющиеся преимущественно в повышении артериального давления, можно вызвать раздражением рецепторов поверхности тела. Так, при болевых раздражениях рефлекторно сужаются сосуды, особенно органов брюшной полости, и артериальное давление повышается. Такой же эффект можно получить при сильных электрических раздражениях центрального отрезка любого перерезанного чувствительного нерва. Раздражение кожи холодом также вызывает рефлекторное сужение сосудов - главным образом кожных артериол.

Гипертоническая болезнь в большинстве случаев имеет нейрогенную природу и связана с нарушением нервной регуляции сосудистого тонуса. Дело в том, что мышечные клетки, входящие в состав сосудистой стенки, постоянно находятся в состоянии некоторого напряжения — тонуса. Это тоническое напряжение мышц сосудов, а соответ­ственно и величина кровяного давления поддерживаются на определенном уровне благодаря деятельности головно­го мозга, в том числе и его высшего отдела — коры боль­ших полушарий. Вот почему нервно-психическое напряже­ние, сопровождающееся возбуждением коры головного мозга и его подкорковых образований, одновременно вы­зывает и повышение кровяного давления. Действие на нервную систему чрезвычайных факторов может повредить ее регуляторные механизмы, нарушить нормальную регуляцию сосудистого тонуса и способство­вать развитию гипертонической болезни, которая в свою очередь является причиной склеротических изменений со­судов.

Гипотоническая болезнь (первичная хроническая гипотензия, эссенциальная гипотония). Заболевание, связанное с нарушением функций нервной системы и нейрогормональной регуляции тонуса сосудов, сопровождающееся снижением артериального давления. Исходным фоном такого состояния является астения, связанная с психо-травмирующими ситуациями, хроническими инфекциями и интоксикациями (производственные вредности, злоупотребление алкоголем), неврозы.

18. Фазы работы сердца. Цикл деятельности сердца складывается из трех фаз: первая фаза — систола предсердий (0,1 с), вторая — сис­тола'желуДочков (0,3 с) и третья — общая пауза (0,4 с). Во время общей паузы расслаблены и предсердия, и желу­дочки. В течение сердечного цикла предсердия сокращают­ся 0,1 с и 0,7 с находятся в состоянии диастолического расслабления; желудочки сокращаются 0,3 с, их диастола длится 0,5 с. И. М. Сеченов рассчитал, что желудочки работают 8 ч в сутки. Д1ри учащении сердцебиений, на-пример.во время мышечной работы, укорочение сердечного цикла происходит за счет сокращения отдыха, т. е. общей паузы. Длительность систолы предсердий и желудочков почти не меняется. Во время общей,, паузы сердца мускулатура предсердий и желудочков расслаблена, створчатые клапаны открыты, а полулунные закрыты. Кровь вследствие разности давле­ния притекает из вен в предсердия и, так как клапаны между предсердием и желудочками открыты, свободно про­текает в желудочки. Следовательно, во время общей паузы сердце постепенно заполняется кровью и к концу паузы желудочки заполнены уже на 70%. Систола предсердий начинается с сокращения круговой мускулатуры, окружающей устья вен, впадающих в сердце. Тем самым прежде всего создается препятствие для об­ратного тока крови из предсердий в вены. Во время сис­толы предсердий давление в них повышается до 4—5 мм рт. ст. и кровь выталкивается только в одном направлении — в желудочки. Тотчас после окончания систолы предсердий начинается систола желудочков. Уже в самом начале ее захлопывают­ся предсердно-желудочковые клапаны. Этому способствует то обстоятельство, что их створки по мере заполнения желудочков кровью оттесняются в сторону предсердий и приходят в состояние готовности закрыться. Как только давление в желудочках становится чуть больше, чем в предсердиях, клапаны захлопываются. Систола желудочков состоит из двух фаз: фазы на­пряжения (0,05 с) и фазы изгнания крови (0,25 с). Первая фаза систолы желудочков — фаза напряже­ния — протекает при закрытых створчатых и полулунных клапанах. В это время мышца сердца напрягается вокруг несжимаемого содержимого — крови. Длина мышечных во­локон миокарда не меняется, но по мере увеличения их напряжения растет давление в желудочках. В момент, когда давление крови в желудочках превысит давление в артериях, полулунные клапаны открываются и кровь вы­брасывается из желудочков в аорту и легочный ствол. На­чинается вторая фаза систолы желудочков — фаза изгна-ния_кр_о.ви. Систолическое давление в левом желудочке достигает 120 мм рт. ст., в правом 25—30 мм рт. ст. После фазы изгнания начинается диастола желудочков и давление в них понижается. В тот момент, когда давле­ние в аорте и легочном стволе становится выше, чем в желудочках, полулунные клапаны захлопываются. В это же время предсердно-желудочковые клапаны под давлением крови, скопившейся в предсердиях, открываются. Наступает период общей паузы — фаза отдыха и заполнения "сердца кровью. Затем цикл сердечной деятельности повторяется.

СИСТОЛИЧЕСКИЙ И МИНУТНЫЙ ОБЪЕМЫ СЕРДЦА /Желудочек сердца человека в состоянии покоя при каждом сокращении выбрасывает приблизительно половину содержащейся в нем крови — 60—70 мл. Это количество крови называется систолическим объемом сердца./Он одинаков для левого и правого желудочков. При физической работе систолический объем возрастает, достигая у трени­рованных людей 200 мл и более. ^ Минутный объем сердца, т. е. количество крови, выбра­сываемой сердцем за 1 мин, в покое составляет около 5 л. Так, например, если систолический объем равен 60 мл крови и сердце сокращается 70 раз в минуту, то минутный объем будет: 60 мл X 70 =4200 мл. С началом физической работы наблюдается усиление и учащение сердечной деятельности, что ведет к увеличению минутного объема сердца до 8—10 л. С увеличением час­тоты сердцебиений общая пауза укорачивается и, если сердце сокращается более 200 раз в минуту, становится настолько короткой, что сердце не успевает заполняться кровью. Это ведет к уменьшению и систолического, и минутного объема крови. Это наблюдается у нетренированных людей. У спортсменов при физической нагрузке увеличи­вается минутный объем сердца за счет возрастания силы сокращений, т. е. более полного опорожнения сердца. Минутный объем сердца у них может достигать 25—40 л. Гипокинезия (недостаток движений) оказывает отрица­тельное воздействие на скелетные мышцы: они теряют массу, силу сокращений, выносливость и быстро утомляют­ся. Особенно вредна гипокинезия для сердечно-сосудистой системы. Число сокращений сердца у физически неактив­ных людей больше, объем полостей его меньше, стенки тоньше и минутный объем крови при предельных нагрузках мал (15—20 л). В пожилом возрасте у таких людей раньше и быстрее происходят склеротические изменения в стенках сосудов, особенно в сосудах сердца и головного мозга, что нарушает кровоснабжение этих органов. Физические нагрузки тренируют одновременно и скелет­ную мышцу, и сердечно-сосудистую систему.

19.ПРОВОДЯ́ЩАЯ СИСТЕ́МА сердца, совокупность образований атипичной мускулатуры сердца, образующей узлы автоматии, в которых генерируются или могут генерироваться импульсы возбуждения, и проводящие пути, по которым возбуждение передается к сократительному миокарду. Благодаря наличию проводящей системы возбуждение, а затем и сокращение разных участков сердца происходит в строго определенной последовательности, обеспечивающей мощную систолу (сокращение) желудочков.

У теплокровных животных проводящая система состоит из двух узлов автоматии: синусно-предсердного узла (так называемый водитель ритма сердца, или пейсмекер) и предсердно-желудочкового узла и проводящих путей. В предсердиях проводящие пути представлены межпредсердным проводящим пучком, передним, средним и задним межузловыми трактами. Проводящая система желудочков начинается пучком Гиса, который отходит от предсердно-желудочкового узла к межжелудочковой перегородке. Пучок Гиса разделяется на две ножки (левую и правую), каждая из которых ветвится и образует сеть волокон Пуркине (описаны чешским физиологом Я. Пуркине в 1845), передающих возбуждение на сократительные клетки миокарда левого и правого желудочков сердца.

Синусно-предсердный узел расположен на задней стенке правого предсердия вблизи устья полой вены, состоит из мелких клеток, расположенных группами, разделенными соединительной тканью. Хотя все элементы проводящей системы принципиально способны к автоматической генерации возбуждения, в норме возбуждение генерируется в синусно-предсердном узле (так называемом водителе ритма), а автоматия других элементов проводящей системы подавлена. Клетки синусно-предсердного узла генерируют возбуждение с высокой степенью синхронности. Проведение возбуждения по ткани синусно-предсердного узла происходит с низкой скоростью (0,02 м/с).

От синусно-предсердного узла возбуждение передается правому предсердию по межпредсердному проводящему пучку (пучку Бахмана), охватывает левое предсердие и достигает предсердно-желудочкового узла как по миокарду левого предсердия, так и по межузловым проводящим путям. Скорость проведения возбуждения в миокарде предсердий и проводящих путях одинакова и составляет 0,5-1 м/с. При переходе возбуждения на предсердно-желудочковый узел скорость его распространения снижается до 0,02 м/с (возникает задержка, необходимая для того, чтобы возбужденные и сокращающиеся предсердия выбросили кровь в еще не возбужденный, расслабленный желудочек). От предсердно-желудочкового узла возбуждение передается на пучок Гиса (описан немецким анатомом В. Гисом в 1893), затем на его ножки и сеть волокон Пуркине. Клетки Пуркине имеют протяженную форму и большой диаметр, что обеспечивает высокую скорость проведения возбуждения по проводящей системе желудочков (2-4 м/с). В результате возбуждение с высокой степенью синхронности достигает различных участков сократительного миокарда желудочка, обеспечивая мощное сокращение. Ткань проводящей системы обладает повышенной устойчивостью к гипоксии и другим повреждающим факторам и сохраняет возбудимость в условиях, когда проведение возбуждение по сократительному миокарду угнетено.

20. Свойства сердечной мышцы. Сердечная мышца, как и всякая другая мышца, обладает рядом физиологических свойств: возбудимостью, проводимостью, сократимостью, рефрактерностью и автоматией.

· Возбудимость — это способность кардиомиоцитов и всей сердечной мышцы возбуждается при действии на нее механических, химических, электрических и других раздражителей, что находит свое применение в случаях внезапной остановки сердца. Особенностью возбудимости сердечной мышцы является то, что она подчиняется закону "все — или ничего”. Это значит, что на слабый, допороговой силы раздражитель сердечная мышца не отвечает, (т.е. не возбуждается и не сокращается) ("ничего”), а на раздражитель пороговой, достаточной для возбуждения силы сердечная мышца реагирует своим максимальным сокращением ("все”) и при дальнейшем увеличении силы раздражения ответная реакция со стороны сердца не изменяется. Это связано с особенностями строения миокарда и быстрым распространением по нему возбуждения через вставочные диски — нексусы и анастомозы мышечных волокон. Таким образом, сила сердечных сокращений в отличие от скелетных мышц не зависит от силы раздражения. Однако этот закон, открытый Боудичем, в значительной степени условен, так как на проявление данного феномена влияют определенные условия — температура, степень утомления, растяжимость мышц и ряд других факторов.

Стоит добавить, что он применим только по отношению к действию на сердце искусственного раздражителя. Боудич в эксперименте с вырезанной полоской миокарда обнаружил, что если ее ритмически раздражать электрическими импульсами одинаковой силы, то на каждое последующее раздражение мышца ответит большим сокращением до ее максимальной величины. Это явление получило название "лестницы Боудича”.

· Проводимость — это способность сердца проводить возбуждение. Скорость проведения возбуждения в рабочем миокарде разных отделов сердца неодинакова. По миокарду предсердий возбуждение распространяется со скоростью 0,8— 1 м/с, по миокарду желудочков— 0,8 —0,9 м/с. В атриовентрикулярной области на участке длиной и шириной в 1 мм проведение возбуждения замедляется до 0,02— 0,05 м/с, что почти в 20 —50 раз медленнее, чем в предсердиях. В результате этой задержки возбуждение желудочков начинается на 0,12—0,18 с позже начала возбуждения предсердий. Существует несколько гипотез, объясняющих механизм атриовентрикулярной задержки, но этот вопрос требует своего дальнейшего изучения. Однако эта задержка имеет большой биологический смысл — она обеспечивает согласованную работу предсердий и желудочков.

· Рефрактерность — состояние невозбудимости сердечной мышцы. Степень возбудимости сердечной мышцы в процессе сердечного цикла меняется. Во время возбуждения она теряет способность реагировать на новый импульс раздражения. Такое состояние полной невозбудимости сердечной мышцы называется абсолютной рефрактерностью и занимает практически все время систолы. По окончании абсолютной рефрактерности к началу диастолы возбудимость постепенно возвращается к норме — относительная рефрактерность. В это время (в середине или в конце диастолы) сердечная мышца способна отвечать на более сильное раздражение внеочередным сокращением — экстрасистолой. За желудочковой экстрасистолой, когда внеочередной импульс зарождается в атриовентрикулярном узле, наступает удлиненная (компенсаторная) пауза.

Она возникает в результате того, что очередной импульс, который идет от синусного узла, поступает к желудочкам во время их абсолютной рефрактерности, вызванной экстрасистолой и этот импульс или одно сокращение сердца выпадает. После компенсаторной паузы восстанавливается нормальный ритм сокращений сердца. Если дополнительный импульс возникает в синоатриальном узле, то происходит внеочередной сердечный цикл, но без компенсаторной паузы. Пауза в этих случаях будет даже короче обычной. За периодом относительной рефрактерности наступает состояние повышенной возбудимости сердечной мышцы (экзальтационный период) когда мышца возбуждается и на слабый раздражитель. Период рефрактерности сердечной мышцы продолжается более длительное время, чем в скелетных мышцах, поэтому сердечная мышца не способна к длительному титаническому сокращению.

Иногда отмечаются патологические режимы распространения возбуждения, при которых предсердия и желудочки возбуждаются самопроизвольно с высокой частотой и сокращаются неодновременно. Если эти возбуждения периодичны, то такую аритмию называют трепетанием, если они неритмичны —мерцанием. Как трепетание, так и мерцание желудочков вызывает наибольшую опасность для жизни.

· Сократимость. Сократимость сердечной мышцы имеет свои особенности. Сила сердечных сокращений зависит от исходной длины мышечных волокон (закон Франка–Старлинга). Чем больше притекает к сердцу крови, тем более будут растянуты его волокна и тем большая будет сила сердечных сокращений. Это имеет большое приспособительное значение, обеспечивающее более полное опорожнение полостей сердца от крови, что поддерживает равновесие количества притекающей к сердцу, и оттекающей от него крови. Здоровое сердце уже при небольшом растяжении отвечает усиленным сокращением, в то время как слабое сердце даже при значительном растяжении лишь немного увеличивает силу своего сокращения, а отток крови осуществляется за счет учащения ритма сокращений сердца. Кроме того, если по каким–либо причинам произошло чрезмерное сверх физиолочески допустимых границ растяжение сердечных волокон, то сила последующих сокращений уже не увеличивается, а ослабляется.

Сила и частота сердечных сокращений меняется и под действием различных нервно–гуморальных факторов без изменения длины мышечных волокон.

Особенностями сократительной деятельности миокарда является то, что для поддержания этой способности необходим кальций. В безкальциевой среде сердце не сокращается. Поставщиком энергии для сокращений сердца являются макроэргические соединения (АТФ и КФ). В сердечной мышце энергия (в отличие от скелетных мышц) выделяется, главным образом, в аэробную фазу, поэтому механическая активность миокарда линейно связана со скоростью поглощения кислорода. При недостатке кислорода (гипоксемия) активируются анаэробные процессы энергетики, но они только частично компенсируют недостающую энергию. Недостаток кислорода отрицательно влияет и на содержание в миокарде АТФ и КФ.

В сердчной мышце, имеется так называемая атипическая ткань, образующая проводящую систему сердца (рис. 10.).

Эта ткань имеет более тонкие миофибриллы с меньшей поперечной исчерченностью. Атипические миоциты более богаты саркоплазмой. Ткань проводящей системы сердца более возбудима и обладает резко выраженной способностью к проведению возбуждения. В некоторых местах миоциты этой ткани образуют скопления или узлы. Первый узел располагается под эпикардом в стенке правого предсердия, вблизи впадения полых вен.

Второй узел располагается под эпикардом стенки правого предсердия в области атриовентрикулярной перегородки, разделяющей правое предсердие от желудочка, и называется предсердно-желудочковым (атриовентрикулярным) узлом. От него отходит пучок Гиса, разделяющийся на правую и левую ножки, которые по отдельности идут в соответствующие желудочки, где они распадаются на волокна Пуркинье. Проводящая система сердца имеет непосредственное отношение к автоматии сердца.

Автоматия сердца — это способность ритмически сокращаться под влиянием импульсов, зарождающихся в самом сердце без каких-либо раздражений. Автоматию сердца можно наблюдать на удаленном, и помещенном в раствор Рингера, сердце лягушки. Явление автоматии сердца было известно очень давно. Его наблюдали Аристотель, Гарвей, Леонардо Да Винчи.

ормальная электрокардиограмма

Электрокардиограмма здоровых людей отличается значительной вариабельностью, поэтому надо учитывать индивидуальные особенности каждого человека. На электрокардиограммах принято различать следующие зубцы и интервалы:

1) зубец Р;

2) интервал P—Q (или P—R);

3) желудочковый комплекс QRS;

4) интервал S—Т (или R—Т);

5) зубец Т;

6) зубец U;

7) интервал Т—Р;

8) интервал QRST;

9) интервал R—R.

Зубец Р отражает возбуждение обоих предсердий, причем правое предсердие возбуждается раньше и дает положительный вверх направленный зубец Р, а левое — позже, что выявляется отрицательным вниз направленным зубцом. Наличие на ЭКГ обычно положительного зубца Р объясняется тем, что в норме возбуждение правого предсердия начинается раньше и преобладает над возбуждением левого предсердия. Продолжительность, или ширина, зубца Р колеблется в пределах 0,06—0,11 с (в среднем 0,08 с), а высота равняется 1—2 мм.

Интервал Р—Q указывает на время прохождения импульса от предсердий до желудочков. Продолжительность интервала колеблется в пределах 0,12—0,2 с и зависит в основном от проводящей способности атрио-вентрикулярного узла.

Желудочковый комплекс QRS состоит из зубцов Q, R, S. Зубец Q отображает возбуждение правой сосочковой мышцы, основания правого желудочка, межжелудочковой перегородки, верхушки сердца. Он всегда бывает направлен книзу. Его продолжительность (ширина) соответствует 0,03 с, величина (глубина) колеблется от 0 до 3 мм. Нередко зубец Q бывает не выражен.

Зубец R отображает распространение возбуждения по основанию левого желудочка, боковым стенкам и поверхности обоих желудочков. С середины нисходящего колена зубца R возбуждением бывает охвачено все сердце и идет лишь его нарастание. Высота зубца R во втором отведении колеблется в пределах от 10 мм до 20 мм.

Зубец S соответствует периоду возбуждения обоих желудочков и обычно направлен книзу, но иногда может быть не выражен. За норму принимают колебания величины зубца от 0 до 6 мм.

В целом желудочковый комплекс QRS является показателем времени, в течение которого волна возбуждения успевает полностью охватить мускулатуру желудочков. Продолжительность (ширина) комплекса QRS у здоровых людей соответствует 0,06—0,1 с.

Интервал S—Т отображает период уменьшения интенсивности возбуждения желудочков. Длительность интервала зависит от частоты сердечных сокращений и варьирует от 0 до 0,15 с. Интервал S—Т представляет собой почти горизонтальную линию, идущую на одном уровне с интервалом P—Q. В норме его смещения вверх и вниз не должны превышать 1 мм.

Зубец Т еще не получил точного объяснения. По всей вероятности, появление этого зубца связано с процессом прекращения возбуждения в сократительных волокнах миокарда обоих желудочков. Иначе говоря, это результат алгебраической суммы потенциалов электродвижущих сил, возникающих в различных точках желудочков при прекращении в них возбуждения. Длительность (ширина) зубца Т колеблется от 0,05 до 0,25 с, высота — от 2 до 6 мм во II отведении.

Зубец U встречается только на некоторых электрокардиограммах и происхождение его остается неясным.

Интервал Т—Р отображает диастолическую фазу сердца. Токи действия в это время не вырабатываются, следовательно, нет и разности потенциалов; электрокардиографом записывается прямая линия, получившая название изоэлектрической, или нулевой, линии.

Интервал QRST соответствует всему периоду возбуждения желудочков сердца (от начала до конца), т. е. электрической систоле сердца. Длительность интервала QRST зависит от частоты сердечных сокращений; учащенная работа сердца сопровождается укорочением систолы, замедленная — удлинением. В среднем длительность систолы колеблется от 0,24 до 0,55 секунды.

Интервал R—R, а также интервал Р—Р составляют полный цикл работы сердца; в норме эти отрезки имеют почти одинаковую продолжительность.

Однополюсные усиленные отведения от конечностей имеют ряд особенностей. Так, например, у людей со здоровым сердцем, при обычном его положении в грудной клетке, в отведении aVR зубцы Р и Т _ бывают отрицательными, зубец R мал, а зубец S глубок. При изменении положений сердца в грудной клетке изменяется и форма желудочкового комплекса.

В однополюсных грудных отведениях величина и характер зубцов, особенно комплекса QRS, во многом зависят от месторасположения активного (дифферентного) электрода на грудной клетке. Обычно при нормальном положении оси сердца в отведении V1 зубец R мал, в отведении V3 он увеличивается, достигая максимума высоты в отведении V4; В отведениях V5, 6 высота зубца R вновь снижается. Горизонтальное и вертикальное положения сердца в грудной клетке значительно меняют соотношения величин зубцов R и S. В этих отведениях интервал S—T часто и в норме бывает приподнят на 2 мм или опущен до 0,5 мм по отношению к изоэлектрической линии.

Деятельность сердца регулируется двумя парами нервов: блуждающими и симпатическими. Блуждающие нервы берут начало в продолговатом мозге, а симпатические нервы отходят от шейного симпатического узла. Блуждающие нервы тормозят сердечную деятельность. Под влиянием импульсов, поступающих к сердцу по симпатическим нервам, учащается ритм сердечной деятельности и усиливается каждое сердечное сокращение. Изменение просвета кровеносных сосудов происходит под влиянием импульсов, предающихся на стенки сосудов по симпатическим сосудосуживающим нервам. Ритм и сила сердечных сокращений меняются в зависимости от эмоционального состояния человека, выполняемой им работы. Состояние человека влияет и на кровеносные сосуды, меняет их просвет. При страхе, гневе, физическом напряжении из-за изменения просвета кровеносных сосудов человек бледнеет или краснеет. Раздражением любых чувствительных окончаний можно рефлекторно вызвать урежение или учащение сокращений сердца. Тепло, холод, укол и другие раздражения вызывают в окончаниях центростремительных нервов возбуждение, которое передается в центральную нервную систему и оттуда по блуждающему или симпатическому нерву достигает сердца. Центробежные нервы сердца получают импульсы не только из продолговатого и спинного мозга, но и от вышележащих отделов центральной нервной системы, в том числе и от коры больших полушарий головного мозга. Известно, что боль вызывает учащение сердечных сокращений. Импульсы из центральной нервной системы предаются одновременно по нервам к сердцу и из сосудодвигательного центра по другим нервам к кровеносным сосудам. Поэтому обычно на раздражение, поступившее из внешней или внутренней среды организма, рефлекторно отвечают и сердце, и сосуды.

Функции сердца и сердечной мышцы: сердце – насос, перекачивающий кровь; сердце – резервуар для временного размещения крови; цикличность сокращений – фаза систолы и диастолы; свойства сердечной мышцы – возбудимость (обладают все клетки миокарда), автоматизм (некоторые клетки миокарда способны самопроизвольно сокращаться), проводимость (осуществляется за счет электрохимического взаимодействия между клетками) и сократимость.

РЕГУЛЯЦИЯ РАБОТЫ СЕРДЦА. К внутрисердечным регуляторным механизмам относят внутриклеточные, регуляцию межклеточных взаимодействий и собственно внутрисердечные нервные механизмы. Внесердечные воздействия представлены нервной и гуморальной регуляцией.

Внутриклеточная регуляция. Этот уровень регуляции заключается в способности кардиомиоцитов синтезировать различные белки в соответствии с уровнем их разрушения. Особенностью кардиомиоцитов является цикличность их обменных процессов, связанных с ритмом сердечной деятельности. Наиболее быстрый распад богатых энергией создинений - АТФ и гликогена - происходит в момент систолы и соответствует комплексу QRS электрокардиограммы. Ресинтез и восстановление уровня этих веществ происходит за время диастолы. Поэтому при чрезвычайных условиях при усиленной работе сердца одним из компенсаторных механизмов, адаптирующих деятельность сердца к воздействиям, является удлинение фазы диастолы. Кардиомиоциты способны избирательно адсорбировать из циркулирующей крови и накапливать в цитоплазме вещества, поддерживающие и регулирующие их биоэнергетику, а также соединения, повышающие потребность клеток в кислороде.

Межклеточная регуляция. В сердечной мышце межклеточная регуляция связана с наличием вставочных дисков-нексусов, обеспечивающих транспорт необходимых веществ, соединение миофибрилл, переход возбуждения с клетки на клетку. Такая организация позволяет функционировать миокарду на возбуждение как синцитий. Межклеточная регуляция включает также взаимодействие кардиомиоцитов с соединительно-тканными клеткам составляющих строму сердечной мышцы.

Внутрисердечная нервная регуляция. Этот уровень является автономным хотя он включен и в сложную иерархию центральной нервной регуляции. Собственная нервная регуляция сердца осуществляется метасимпатической нервной системой, нейроны которой располагаются в интрамуральных ганглиях сердца. Интракардиальный метасимпатический нервный аппарат регулирует ритм сердечных сокращений, скорость предсердно-желудочкового проведения, реполяризацию кардиомиоцитов, скорость диастолического расслабления. Все это направлено в организме на поддержание стабильного наполнения кровью артериальной системы.

Экстракардиальная нервная регуляция. Этот уровень регуляции обеспечивает специальные, супраспинальные и корковые механизмы, передающие свои влияния по волокнам блуждающего и симпатических нервов.

Вагусные влияния. В продолговатом мозгу располагается заднее ядро блуждающего нерва. Аксоны клеток этого ядра в составе правого и левого нервных стволов направляются к сердцу и образуют синапсы на моторных метасимпатических нейронах интрамуральных ганглиев. Большая часть волокон правого блуждающего нерва доходит до синусоатриального узла, а левого - до атриовентрикулярного, поэтому стимуляция правого блуждающего нерва сказывается на частоте сердечных сокращений, левого- на предсердно-желудочвовой проведении. Впервые влияние блуждающих нервов на сердце обнаружили братья Э. и Г. Вебер /1845/.Раздражение блуждающих нервов сопровождается замедлением сердечного ритма (отрицательный хронотронный эффект), уменьшением амплитуды сокращений сердца (отр. инотропный эффект), понижением возбудимости сердечной мышцы (отр. батмотропный эффект) и уменьшением скорости проведения возбуждения (отр. дротропный эффект). При это иногда возникает полная блокада проведения возбуждения в предсердно-желудочковом узле. Сильное раздражение блуждающих нервов может вызвать полную остановку сердечной деятельности, однако прекратившиеся вначале сокращения сердца, несмотря на продолжающееся раздражение, способно постепенно восстанавливаться. Это явление получило название ускользания сердца из-под контроля блуждающего нерва.

Симпатические влияния. Эти влияния имеют противоположную направленность по сравнению с раздражением блуждающего нерва, и проявляются в положительных хроно-ино-дромо-и батмотропных эффектах. Синаптические сердечные волокна идут от верхнегрудных и шейных околопозвоночных симпатических узлов и оканчиваются густой сетью в области С-А узла и миокарде желудочков. Среди симпатических ветвей, идущих к сердцу, находятся волокна, раздражение которых вызывает избирательное увеличение силы сердечных сокращений, это усиливающий нерв сердца. Этот нерв играет трофическую роль и оказывает влияние на проведение возбуждения в сердечной мышце. При одновременном раздражении симпатических и парасимпатических нервов преобладает действие на сердце блуждающих нервов.

В основе эффектов, вызываемых стимуляцией периферических концов тех и других нервов, лежит выделение биологически активных веществ, с помощью которых осуществляется передача возбуждения. При раздражении вагуса выделяется ацетилхолин, а симпатических нервов- адреналин или норадреналин, сходные по своему химическому строению.

Действие ацетилхолина на сердце в первую очередь связано с повышением мембранной проницаемости для ионов калия , препятствующих развитию деполяризации мембран-клеток пейсмекеров и в конечном итоге - препятствующих развитию возбуждения. Ацетилхолин противодействует входу ионов кальция в клетку, что приводит к ослаблению сокращения сердца. Действие норадреналина на сердце связано с ростом мембранной проницаемости для ионов кальция, что сопровождается повышением степени сопряжения возбуждения и сокращения миокарда. Сниженная избытком К+ возбудимость и проводимость предсердий и желудочков восстанавливается норадреналином. Он разрушается значительно медленнее чем ацетилхолин, поэтому его взаимодействие с адренорецепторами сердечных клеток, сопровождается более продолжительным эффектом.

Гуморальная регуляция. Она осуществляется биологически активными веществами, выделяющимися в кровь и лимфу из эндокринных желез, а также ионным составом межклеточной жидкости. Эта регуляция в наибольшей степени присуща адреналину, выделяемому мозговым слоем надпочечников. Он выделяется в кровь при эмоциональных нагрузках, физическим напряжении и других состояниях. Адреналин улучшает снабжение миокарда энергией путем активации расщепления внутриклеточного гликогена, а также повышает проницаемость клеточных мембран для ионов Са2+. Гормон поджелудочной железы - глюкагон, гормон щитовидной железы - тироксин - увеличивают частоту сердечных сокращений. Повышается также чувствительность сердца к симпатическим воздействиям. Коритикостероиды увеличивают силу сердечных сокращений. Повышение содержания во внутриклеточной среде калия угнетает деятельность сердца. Подобным образом влияют на сердце ионы НСО3- и Н+. Ионы кальция повышают возбудимость и проводимость мышечных волокон.

Тонус сердечных нервов. Иннервирущие сердце нервы симпатической и парасимпатической нервной системы постоянно находятся в состоянии не которого тонуса. В норме преобладает тонус блуждающего нерва. Тонус блуждающих нервов увеличивается при повышении внутричерепного давления, и давления в кровеносных сосудах, продолговатого мозга, аорте, каротидного синуса и других кровеносных сосудах. В поддержании тонуса участвуют различные гормональные вещества, например адреналин, ионы кальция, уровень парциального давления СО2. Тонус блуждающих нервов находится в зависимости от фаз дыхательного цикла. Во время выдоха он повышается, что влечет за собой урежение частоты сердечных сокращений. Это обычное в нормальных состояние называют дыхательной аритмией. Определенным тонусом обладают также симпатические клетки, посылающие свои аксоны к сердцу. После перерезки всех симпатических путей или удалении основных источников симпатической иннервации сердца-звездчатых ганглиев - ритм сердца собаки снижается на 15-25%. При полной симпатической и парасимпатической денервации сердца оно начинает совращаться в ритме, который задается синусо-предсердным узлом. Этот собственный ритм сердца несколько выше, чем ритм интактного сердца. Нормальная работа сердца определяется взаимодействием влияний, поступающих к нему по блуждающим и симпатическим нервам.

21. Значения дыхания Дыхание - жизненно необходимый процесс постоянного обмена газами между организмом и окружающей его внешней средой. Почти все сложные реакции превращения веществ в организме идут с обязательным участием кислорода. Без кислорода невозможен обмен веществ., и для сохранения жизни необходимо постоянное поступление кислорода. При окислительных процессах образуются продукты распада в том числе и углекислый газ, которые удаляются из организма. При дыхании происходит обмен газов между организмом и окружающей средой, что обеспечивает постоянное поступление в организм кислорода и удаление из него углекислого газа. Этот процесс протекает в легких. Переносчиком кислорода от легких к тканям, а углекислого газа от тканей к легким является кровь. Органы дыхания, их строение и функция. Голосовой аппарат Полость носа. В органах дыхания различают воздухоносные пути, по которым проходит вдыхаемый и выдыхаемый воздух, и легкие, где совершается газообмен между воздухом и кровью. Дыхательный путь начинается носовой полостью, отделенной от полости рта перегородкой: спереди - твердое небо, а сзади - мягкое небо. Воздух в носовую полость проникает через носовые отверстия - ноздри. У наружного края их располагаются волоски, предохраняющие от попадания в нос пыли. Носовая полость делится перегородкой на правую и левую половину, каждая из которых делится носовыми раковинами на нижний, средний и верхний носовые ходы. В первые дни жизни дыхание у детей через нос затруднено. Носовые ходы у детей уже, чем у взрослых, и окончательно формируются к 14-15 годам. Слизистая оболочка носовой полости обильно снабжена кровеносными сосудами и покрыта многорядным мерцательным эпителием. В эпителии много железок, выделяющих слизь, которая вместе с пылевыми частицами, проникшими с вдыхаемым воздухом, удаляется мерцательными движениями ресничек. В носовой полости вдыхаемый воздух согревается, частично очищается от пыли и увлажняется. Носовая полость сзади через отверстия - хоаны - сообщается с носоглоткой. Носоглотка. Носоглотка - верхняя часть глотки. Глотка представляет собой мышечную трубку, в которую открываются полость носа, полость рта и гортани. В носоглотку, кроме хоан, открываются слуховые трубы, соединяющие полость глотки с полостью среднего уха. Из носоглотки воздух проходи в ротовую часть глотки и дальше в гортань. Глотка у детей широкая и короткая, слуховая труба располагается низко. Заболевания верхних дыхательных путей нередко осложняются воспалением среднего уха, так как инфекция легко проникает в среднее ухо через широкую и короткую слуховую трубу. Гортань. Скелет гортани образован несколькими хрящами, соединенными между собой суставами, связками и мышцами. Самый крупный из них - щитовидный хрящ. Над входом в гортань располагается хрящевая пластинка - надгортанник. Он выполняет роль клапана, закрывающего вход в гортань при глотании. Полость гортани покрыта слизистой оболочкой, которая образует две пары складок, замыкающих вход в гортань во время глотания. Нижняя пара складок покрывает голосовые связки. Пространство между голосовыми связками называют голосовой щелью. Таким образом, гортань не только связывает глотку с трахеей, но и участвует в речевой функции. При обычном дыхании голосовые связки расслаблены и щель между ними сужается. Выдыхаемый воздух, проходя через узкую щель, заставляет колебаться голосовые связки - возникает звук. От степени натяжения голосовых связок зависит высота тона: при натянутых связках звук выше, при расслабленных - ниже. Дрожанию голосовых связок и образованию звуков способствуют движения языка, губ и щек, сокращение мышц самой гортани. У мужчин голосовые связки длиннее, чем у женщин. Это объясняет более низкий голос мужчин. Гортань у детей короче, уже и располагается выше, чем у взрослых. Наиболее интенсивно гортань растет на 1-3м годах жизни и в период полового созревания. В 12-14 лет у мальчиков на месте соединения пластинок щитовидного хряща начинает расти кадык, удлиняются голосовые связки, вся гортань становится шире и длиннее, чем у девочек. У мальчиков в этот период происходит ломка голоса. Трахея и бронхи. Трахея отходит от нижнего края гортани. Это полая неспадающаяся трубка длиной (у взрослого человека) около 10-13 см. Внутри трахеи выстлана слизистой оболочкой. Эпителий здесь многорядный, мерцательный. Позади трахеи расположен пищевод. На уровне 4-5 грудных позвонков трахея делится на правый и левый первичные бронхи. Бронхи по своему строению напоминают трахею. Правый бронх короче левого. Первичный бронх, вступив в ворота легких, делится на бронхи второго, 3-го и других порядков, которые образуют бронхиальное дерево. Самые тонкие веточки называют бронхиолами. У новорожденных трахея и короткая, длина ее 4см, к 14-15 годам длина трахеи составляет 7см. Легкие. Тонкие бронхиолы входят в легочные дольки и внутри них делятся на конечные бронхиолы. Бронхиолы разветвляются на альвеолярные ходы с мешочками, стенки которых образованы множеством легочных пузырьков - альвеол. Альвеолы являются конечной часть. Дыхательного пути. Стенки легочных пузырьков состоят из одного слоя плоских эпителиальных клеток. Каждая альвеола окружена снаружи густой сетью капилляров. Через стенки альвеол и капилляров происходит обмен газами - из воздуха в кровь переходит кислород. А из крови в альвеолы поступают углекислый газ и пары воды. В легких насчитывают до 350 млн. альвеол, а их поверхность достигает 150м кв. Большая поверхность альвеол способствует лучшему газообмену. По одну сторону этой поверхности находится альвеолярный воздух, постоянно обновляющийся в своем составе обширную поверхность альвеол происходит диффузия кислорода и углекислого газа. Во время физической работы, когда при глубоких вдохах альвеолы значительно растягиваются, размеры дыхательной поверхности увеличивается. Чем больше общая поверхность альвеол, тем интенсивнее происходит диффузия газов. Каждое легкое покрыто серозной оболочкой, называемой плеврой. У плевры два листка. Один плотно сращен с легким, другой приращен к грудной клетке. Между обоими листками - небольшая плевральная полость, заполненная серозной жидкостью (около 1-2мл), которая облегчает скольжение листков плевры при дыхательных движениях. Легкие у детей растут главным образом за счет увеличения объема альвеол ( у новорожденного диаметр альвеолы 0,07 мм, у взрослого он достигает уже 0,2 мм). До трех лет происходят усиленный рост легких и дифференцировка их отдельных элементов. Число альвеол к восьми годам достигает числа их у взрослого человека. В возрасте от 3-7 лет темпы роста легких снижаются. Особенно энергично растут альвеолы после 12 лет. Объем легких к 12 годам увеличивается в 10 раз по сравнению с объемом легких новорожденного, а к концу периода полового созревания - в 20 раз (в основном за счет увеличения объема альвеол).

22. Газообмен в легких и тканях В легких О2 из альвеолярного воздуха переходит в кровь, а углекислый газ из крови поступает в легкие. Движение газов происходит по законам диффузии, согласно которым газ распространяется из среды с высоким парциальным давлением в среду с меньшим давлением. Парциальным давлением называют часть общего давления, которая приходится на долю данного газа в газовой смеси. Чем вше процентное содержание газа в смеси, тем соответственно выше его парциальное давление. Для газов, растворенных в жидкости, употребляют термин «напряжение», соответствующий термину «парциальное давление», применяемому для свободных газов. Газообмен в легких совершается беду альвеолярным воздухом и кровь. Альвеолы легких оплетены густой сетью капилляров. Стенки альвеол и стенки капилляров очень тонкие, что способствует проникновению газов из легких в кровь и наоборот. Газообмен зависит от поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов. Такие условия есть в легких. При глубоком вдохе альвеолы растягиваются и их поверхность достигает 100-150 м кв. Также велика и поверхность капилляров в легких. Есть и достаточная разница парциального давления газов альвеолярного воздуха и напряжения этих газов в венозной крови. В крови кислород соединяется с гемоглобином, образуя непрочное соединение - оксигемоглобин. 1г гемоглобина способен связать 1, 34 см куб. кислорода. Чем выше парциальное давление кислорода, тем больше образуется оксигемоглобина. В альвеолярном воздухе парциальное давление кислорода 100-110 мм рт. ст. При этих условиях 97% гемоглобина крови связывается с кислородом. В виде оксигемоглобина кислород от легких кровью переносится к тканям. Здесь парциальное давление кислорода низкое и оксигемоглобин диссоциирует, высвобождая кислород. Так обеспечивается снабжение тканей кислородом. Наличие в воздухе или тканях углекислого газа уменьшает способность гемоглобина связывать кислород. Связывание углекислого газа кровью. Углекислый газ переносится кровью в химически связанном виде - в виде гидрокарбоната натрия и гидрокарбоната калия. Часть его транспортируется гемоглобином. Связывание углекислого газа и отдача его кровью зависит от его напряжения в тканях и крови. Важная роль при этом принадлежит содержащемуся в эритроцитах ферменту карбоангидразе. Карбоангидраза в зависимости от содержания углекислого газа ускоряет во много раз реакцию, уравнение которой: СО2+Н2О« Н2СО3. В капиллярах тканей, где напряжение углекислого газа высокое, происходит образование угольной кислоты. В легких карбоангидраза способствует дегидратации, что приводит к вытеснению углекислого газа из крови. Газообмен в легких у детей тесно связан с особенностями регуляции у них кислотно-щелочного равновесия. У детей дыхательный центр очень чутко реагирует на малейшие изменения реакции крови. Даже при незначительном сдвиге равновесия в сторону подкисления. У детей легко возникает одышка. Диффузионная способность легких у детей с возрастом увеличивается. Это связано с увеличением суммарной поверхности альвеол легких. Потребность организма в кислороде и выделение углекислого газа определяются уровнем окислительных процессов, протекающих в организме. С возрастом этот уровень снижается, соответственно и величина газообмена на 1 кг массы по мере роста ребенка уменьшается. транспорт дыхательных газов. Около О,3% О2, содержащегося в артериальной крови большого круга при нормальном Ро2, растворено в плазме. Все остальное количество находится в непрочном химическом соединении с гемоглобином (НЬ) эритроцитов. Гемоглобин представляет собой белок с присоединенной к нему железосодержащей группой. Fе + каждой молекулы гемоглобина соединяется непрочно и обратимо с одной молекулой О2. Полностью насыщенный кислородом гемоглобин содержит 1,39 мл. О2 на 1 г Нb (в некоторых источниках указывается 1,34 мл), если Fе + окислен до Fе +, то такое соединение утрачивает способность переносить О2. Полностью насыщенный кислородом гемоглобин (НbО2) обладает более сильными кислотными свойствами, чем восстановленный гемоглобин (Нb). В результате в растворе, имеющем рН 7,25, освобождение 1мМ О2 из НbО2 делает возможным усвоение О,7 мМ Н+ без изменения рН; таким образом, выделение О2 оказывает буферное действие. Соотношение между числом свободных молекул О2 и числом молекул, связанных с гемоглобином (НbО2), описывается кривой диссоциации О2 (рис.7). НbО2 может быть представлен в одной из двух форм: или как доля соединенного с кислородом гемоглобина (% НbО2), или как объем О2 на 100 мл крови во взятой пробе (объемные проценты). В обоих случаях форма кривой диссоциации кислорода остается одной и той же. Насыщение тканей кислородом. Транспорт O2 из крови в те участки ткани, где он используется, происходит путем простой диффузии. Поскольку кислород используется главным образом в митохондриях, расстояния, на которые происходит диффузия в тканях, представляются большими по сравнению с обменом в легких. В мышечной ткани присутствие миоглобина, как полагают, облегчает диффузию O2. Для вычисления тканевого Po2 созданы теоретически модели, которые предусматривают факторы, влияющие на поступление и потребление O2, а именно расстояние между капиллярами, кроваток в капиллярах и тканевой метаболизм. Самое низкое Po2 установлено в венозном конце и на полпути между капиллярами, если принять, что кроваток в капиллярах одинаковый и что они параллельны.