- •Информация о дисциплине
- •Иметь представление:
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1.Содержание дисциплины (по гос впо)
- •1.2.2. Объём дисциплины и виды учебной работы
- •1.2.3. Перечень видов практических занятий и контроля для всего курса
- •1.2.4. Перечень видов практических занятий и контроля для 1 части курса
- •2.Рабочие учебные материалы
- •Раздел 6. Принципы функционирования и конструкции свч шестиполюсников, их электрические модели (9 часов)
- •Раздел 7. Принципы функционирования и конструкции свч восьмиполюсников, их электрические модели(13 часов)[2], стр447- 454, 494- 498 или [3],стр. 474- 478, 426- 454, или [4], стр. 408- 429, 473- 477
- •Часть 2.Антенны(объем 80 часов)
- •Раздел 9. Принципы функционирования вибраторных антенн. Аналитические и численные методы расчета поля излучения(10 часов)
- •Раздел 11. Понятие о синтезе линейных антенных систем по заданной диаграмме направленности (3 часа)
- •Раздел 12. Аналитические и численные методы расчета поля излучения плоских излучающих поверхностей и решеток излучателей (8 часов)
- •Раздел 13. Принципы функционирования антенн в режиме радиоприема (3 часа)
- •Раздел 14. Типовые вибраторные и щелевые антенны свч. Конструкции и принципы функционирования, их характеристики. (14 часов)
- •Раздел 15. Типовые конструкции апертурных антенн. Принципы их функционирования, характеристики (12 часов)
- •Раздел 16. Конструкции, принципы функционирования и характеристики типовых антенных решеток (7 часов)
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины в объеме полного курса
- •2.2.1.1. Тематический план дисциплины для студентов очно-заочной формы обучения
- •2.2.1.2. Тематический план дисциплины для студентов заочной формы обучения
- •2.2.2. Тематический план дисциплины в объеме 1 части курса
- •2.2.2.1. Тематический план дисциплины для студентов очно-заочной формы обучения
- •2.2.2.2. Тематический план дисциплины для студентов заочной формы обучения
- •2.3. Структурно- логическая схема дисциплины
- •2.4. Временной график изучения дисциплины при использовании информационно-коммуникационной технологии
- •2.5. Практический блок
- •2.5.1. Практические занятия
- •2.5.1.1 Практические занятия (очно-заочная формы обучения)
- •2.5.2. Лабораторные работы
- •2.5.2.1 Лабораторные работы (очно-заочная форма обучения)
- •2.5.2.2 Лабораторные работы (заочная форма обучения)
- •2.6. Балльно-рейтинговая система оценки знаний
- •3.1.3 Дополнительная литературадля выполнения контрольных и
- •3.2. Опорный конспект( 1 часть курса Устройства свч)
- •Принципы функционирования и конструкции регулярных линий передачи электромагнитной энергии и их технические характеристики.
- •3.2.1.1. Общие требования, предъявляемые к линиям передачи электромагнитной энергии, и их технические характеристики.
- •3.2.1.2. Типы линий передачи. Их электрические модели и конструкции.
- •3.2.2. Принципы функционирования нерегулярных линий передачи и линий передачи конечной длины. Методы согласования.
- •3.2.2.1. Неоднородности в линиях передачи.Коэффициенты отражения, бегущей (кбв) и стоячей (ксв) волн.
- •3.2.2.2 Принципы согласования. Конструктивное исполнение согласующих устройств, их электрические модели.
- •3.2.3 Теоретические основы автоматизированногопроектирования свч элементов и узлов трактов свч. Общая теория пассивных многополюсников.
- •3.2.3.1 Волновые матрицы рассеяния и передачи. Матрицы сопротивления и проводимости.
- •3.2.3.2 Основные свойства матрицы рассеяния. Экспериментальное исследование устройств свч с целью оределения элементов волноых матриц.
- •3.2.4 Типовые двухполюсники, или оконечные устройства в линиях передачи. Принципы функционирования и конструкции.
- •3.2.4.1 Закорачивающие поршни
- •3.2.4.2 Согласованные нагрузки
- •3.2.4.3 Индикаторы мощности (детекторные и термисторные головки)
- •3.2.4.4Объемные резонаторы
- •Раздел 3.2.5. Принципы функционирования и конструкции свч четырехполюсников, их электрическиемодели.
- •3.2.5.1Неоднородности в линиях передачи
- •3.2.5.2. Сочленение отрезков линий передач
- •3.2.5.3 Переходы в линиях передачи
- •3.2.5.4 Вращающееся сочленение
- •3.2.5.5 Согласующие устройства (реактивные диафрагмы и штыри, компенсирующий реактивный контур и трансформатор).
- •3.2.5.6Возбудители электромагнитных колебаний
- •3.2.5.7 Аттенюаторы (ослабители мощности)
- •3.2.5.8Фазовращатели (взаимные).
- •3.2.5.9 Проходные резонаторы
- •3.2.5.10Фильтры свч
- •3.2.5.11 Теоретические основы применения ферритов в устройствах свч.
- •3.2.5.12 Невзаимные четырехполюсники. Ферритовые устройства (фазовращатели, вентили, поляризаторы и т.П.)
- •Раздел 3.2. 6. Принципы функционирования и конструкции свч шестиполюсников, их электрические модели.
- •3.2.6.2. Невзаимные шестиполюсники- циркуляторы.
- •Раздел 3.2.7. Принципы функционирования и конструкции свч восьмиполюсников, их электрическиемодели.
- •3.2.7.1 Гибридные т-образные устройства
- •3.2.7.2 Кольцевые мосты
- •3.2.7.3Щелевой мост
- •3.2.7.4 Квадратные мосты
- •3.2.7.5 Направленные ответвители
- •3.2.7.6 Циркулятор, основанный на использовании эффекта Фарадея
- •3.2.7.7Фазовый циркулятор
- •Заключение
- •3.3. Методические указания к выполнению лабораторных работ введение
- •Условные обозначения
- •3.5.1. Общие методические указания
- •3.5.1.1. Установка для измерения характеристик свч устройств
- •3.5.2. Методики измерения характеристик свч устройств
- •3.5.2.1. Измерение коэффициентов отражения, стоячей и бегущей волны
- •3.5.2.2. Экспериментальное определение длины волны в линии передачи
- •3.5.3. Описание и методики проведения лабораторных работ
- •3.5.3.1. Работа №1 -исследование направленных ответвителей
- •1. Цель работы
- •2. Описание лабораторной установки
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •3.5.3.2. Работа№2-исследование и изучение принципа работы мостовых устройств свч
- •1. Цель работы
- •2. Описание лабораторной установки
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •3.5.3.3. Работа№3- Исследование и изучение работы фильтров свч
- •1. Цель работы
- •2.Описание лабораторной установки
- •3. Порядок выполнения работы
- •1. Цель работы
- •2. Описание лабораторной установки
- •3. Порядок выполнения работы
- •4. Содержание отчета
- •5. Вопросы для самопроверки
- •3.6. Методические указания к проведению практических занятий
- •3.6.1. Практическое занятие № 1- Принцип составления матрицы рассеяния двойного волноводного тройника и ее анализ. Принцип составления матрицы рассеяния сложного волноводного устройства.
- •3.6.2. Практическое занятие № 2- Расчёт шлейфных согласующих устройств на основе прямоугольного волновода.
- •Методы согласования линии передачи с нагрузкой
- •3.7. Блок контроля освоения дисциплины (по первой части курса) Общие указания
- •3.7.1. Задание на контрольную работу и методические указания к её выполнению.
- •3.7.2. Тесты текущего контроля
- •Вопрос 1 Дисперсия- это явление…
- •Вопрос 2 Условие согласования линии передачи с нагрузкой это…
- •Вопрос 1 При подаче электромагнитной энергии на плечо 1 y- циркулятора…
- •Вопрос 2 Устройство свч, матрица рассеяния которого описывается выраже-
- •Вопрос 3 Волноводный тройник характеризуется матрицей рассеяния типа…
- •Вопрос 4 Невзаимный шестиполюсник представляет собой устройство,…
- •Вопрос 5 Волноводный y- циркулятор представляет собой …
- •Вопрос 1 Принцип работы направленного ответвителя основан…
- •Вопрос 2 Электромагнитная волна, поступающая на одно из плеч
- •Вопрос 3 На рисунке изображено устройство, выполненное на ос-
- •Вопрос 4 Матрица рассеяния двойного волноводного тройника,
- •Вопрос 5 Изменение длины щели между двумя линиями передачи в
- •Правильные ответы на тренировочные тесты текущего контроля
- •Итоговый контроль
- •Вопросы
- •К зачету по дисциплине «Устройства свч и антенны»,
- •Часть первая «Устройства свч»
- •1. Информация о дисциплине……………………………………….3
- •1.1. Предисловие……………………………………………………… 3
3.6.2. Практическое занятие № 2- Расчёт шлейфных согласующих устройств на основе прямоугольного волновода.
Методика расчета характеристик (коэффициентов матрицы рассеяния) диплексера.
Расчёт шлейфных согласующих устройств на основе прямоугольного волновода (для аудиторного исполнения).
Знание полной проводимости нагрузки необходимо для определения параметров согласующего устройства, которое, как известно из [4], используется для
.
Рис.1
режима обеспечения в линии передачи бегущей волны. Для быстрого и достаточно точного для практики определения проводимости (сопротивления) нагрузки служит круговая диаграмма полных проводимостей (сопротивления) нагрузки, представленная на рис.1.
Проиллюстрируем методику пользования диаграммой на конкретном примере
Предположим,
что экспериментально определены длина
волны в волноводе
=4 см,
коэффициент бегущей волны
=
0,54
и расстояние от исследуемой нагрузки
до ближайшего минимума электрического
поля
=0,4[см].
Как известно, нижняя точка N
диаграммы (рис.2) соответствует минимуму
электрического поля в волноводе. Именно
эта точка N
является отсчетной. Пользуясь
вышеприведенными данными, найдем что
=0,1.
Теперь определяем по шкале внешней
окружности диаграммы точку
,
соответствующую полученному соотношению
=0,1,
перемещаясь по дуге внешней окружности
в сторону нагрузки (рис.2).
Рис. 2
Через
полученную точку
и центр диаграммы проводим радиус. Затем
через точку, соответствующую на
вертикальном диаметре (нижняя часть
диаметра) окружности диаграммы значению
замеренного экспериментально КБВ=0,54,
проводим горизонтальную прямую до
пересечения с этим радиусом (точка Б).
Найденная точка Б
является одновременно точкой пересечения
окружности, являющейся геометрическим
местом точек равных активных проводимостей
с
=0,73
и реактивных проводимостей с
=+1,05.
Точку
можно определить также, если известен
модуль коэффициента отражения
,
который аналитически связан с КБВ или
КСВ зависимостями
.
Для этого необходимо провести окружность радиусом до пересечения ее с радиусом, проведенным из центра окружности в точку . Если известны волновое сопротивление или проводимость волновода:
;
, (7)
где
=377 Ом
– волновое сопротивление свободного
пространства, то легко найти абсолютное
значение
и
.
При определении эквивалентного сопротивления нагрузки по диаграмме за начало отсчета следует принять точку М, находящуюся в верхней части окружности.
Практически расстояние целесообразно определять следующим способом. Предварительно закоротив (подключив к фланцу металлическую пластину) фланец волновода, к которому в последующем будет подключаться исследуемая нагрузка, металлической пластиной, с помощью измерительной линии определяют положение ближайшего минимума электрического поля .
Рис. 3
Затем вместо металлической пластины подключают исследуемую нагрузку и определяют положение нового минимума , ближайшего к ранее найденному в (рис. 3).Тогда .
На рис. 3 кривая 1 – распределение амплитуды электрического поля при закороченном волноводе; кривая 2 – при подключенной нагрузке. Для увеличения точности определения и необходимо пользоваться описанным выше методом «вилки».
