
- •Введение Тема: Введение. Дисциплина «Топографо-геодезические изыскания. История геодезии и топографии.
- •Раздел 1 Общие сведения.
- •Тема 1.1. Понятие о фигуре Земли. Процессы производства геодезических работ
- •1.1.1 Фигура Земли
- •1.1.2 Процессы производства геодезических работ
- •Тема 1.2. Метод проекций в геодезии и способы определения положения точек на местности
- •1.2.1 Центральная проекция
- •1.2.2 Ортогональная проекция
- •1.2.3 Горизонтальная проекция
- •1.2.4 Способы определения положения точек на местности.
- •1.2.5 Искажение расстояний
- •1.2.6 Искажение высот точек
- •Тема 1.3 Основные сведения об измерениях в геодезии. Производство линейных измерений. Начальные сведения о теории ошибок.
- •1.3.1 Измерения в геодезии
- •1.3.2 Начальные сведения из теории ошибок
- •1.3.3 Измерение расстояний
- •1.3.3.1Мерные приборы
- •Тема 1.4. Краткие сведения о построении геодезических сетей. Классификация геодезических сетей
- •Закрепление геодезических пунктов на местности
- •Тема 1.5 Общие сведения о съемках местности
- •Раздел 2
- •2.1 Масштабы. Понятие о плане, карте и профиле местности
- •2.1.1 Масштабы
- •2.1.2 Понятие о плане, карте, аэроснимке
- •Лекция 12
- •2.2. Географические координаты.
- •2.2.1 Астрономические координаты
- •2.2.2 Геодезические координаты
- •Лекция 13
- •2.3 Система плоских прямоугольных координат
- •2.3.1Прямоугольные координаты
- •2.3.2 Полярные координаты
- •2.3.3 Картографическая проекция Гаусса
- •2.4. Разграфка и номенклатура топографических карт и планов.
- •2.4.1. Разграфка и номенклатура топографических карт
- •2.4.2. Разграфка и номенклатура крупномасштабных планов
- •2.4.3. Координатная сетка
- •2.5 Изображение ситуаций земной поверхности на картах и планах.
- •2.5.1 Условные знаки топографических карт
- •2.6. Изображение рельефа на картах и планах. Чтение рельефа. Свойства горизонталей.
- •2.6.1 Изображение рельефа на картах и планах. Чтение рельефа
- •2.6.2 Свойства горизонталей
- •2.7 Ориентирование. Ориентирование линий и ориентирующие углы.
- •2.7.1. Ориентирование по географическому меридиану точки
- •2.7.2. Ориентирование по осевому меридиану зоны
- •2.7.3. Ориентирование по магнитному меридиану точки
- •2.7.4. Румбы линий
- •2.8 Прямая и обратная геодезические задачи
- •2.8.1. Способы задания прямоугольной системы координат
- •2.8.2. Три элементарных измерения
- •2.8.3 Прямая геодезическая задача на плоскости
- •2.8.4 Обратная геодезическая задача на плоскости
- •Раздел 3 Решение задач по топографическим планам и картам
- •3.1 Измерения на топографических планах и картах
- •3.1.2 Ориентирование карты на местности
- •3.2 Решение инженерных задач по топографическому плану
- •3.2.1 Крутизна и направление скатов.
- •3.2.2 Определение отметок
- •3.2.3 Построение профиля
- •3.2.4 Построение водосборной площади
- •3.3 Измерение площадей участков местности на плане
- •3.3.1 Графический способ.
- •3.4 Определение объемов
- •Раздел 4. Теодолитная съемка.
- •4.1 Общие сведения
- •4.1.1Принцип измерения горизонтального угла
- •4.2 Назначение, устройство, типы теодолитов.
- •4.2.1 Назначение
- •4.2.2 Устройство и типы теодолитов
- •4.3 Поверки теодолита
- •4.4 Измерение углов теодолитом.
- •4.2. Измерение вертикальных углов
- •4.5 Производство теодолитной съемки
- •4.5.1 Рекогносцировка местности
- •4.5.2 Привязка теодолитного хода.
- •4.5.3 Измерение горизонтальных углов и длин линий, съемка контуров ситуации
- •4.5.4 Измерение расстояний мерной лентой (рулеткой)
- •4.6 Камеральные работы при теодолитной съемке.
- •4.6.1 Вычисление координат пунктов разомкнутого линейно-углового хода
- •4.6.2 Вычисление координат пунктов замкнутого линейно-углового хода
- •4.6.3Составление плана теодолитной съемки.
- •Раздел 5. Геометрическое нивелирование.
- •5.1 Назначение и виды нивелирования.
- •5.1.1 Геометрическое нивелирование
- •5.1.2. Понятие о гидростатическом нивелировании
- •5.1.3. Понятие о барометрическом нивелировании
- •5.2 Нивелиры. Нивелирные рейки.
- •5.2.1. Нивелиры: их устройство, поверки, исследования
- •5.2.2 Нивелирные рейки
- •5.3 Производство геометрического нивелирования
- •5.3.1 Работы на станции
- •5.3.2 Измерение линий и ведение пикетажа
- •5.3.3 Элементы кривой и их определение.
- •5.3.4. Влияние кривизны земли и рефракции на измеряемое превышение
- •5.4 Камеральная обработка результатов геометрического нивелирования
- •5.4.1 Вычисление отметок реперов разомкнутого хода технического нивелирования
- •5.4.2 Составление продольного профиля
- •5.4.3 Нанесение на профиль проектных линий. Вычисление уклонов, проектных и рабочих отметок.
- •5.5 Нивелирование поверхности.
- •5.5.1 Подготовка поверхности участка к нивелированию
- •5.5.2 Нивелирование вершин квадратов
- •5.5.3 Составление плана с горизонталями
- •Раздел 6 Общие сведения о топографических съемках.
- •6.1 Назначение топографических съемок
- •6.1.1Принцип топографической съемки Комплекс работ, в результате выполнения которого получают карту или план местности, называют топографической съемкой.
- •6.1.2. Классификация съемок
- •6.2 Оптические дальномеры
- •Лекция 58
- •6.3 Тригонометрическое нивелирование
- •Раздел 7. Тахеометрическая съемка.
- •7.1 Назначение тахеометрической съемки и применяемые приборы
- •7.2 Производство тахеометрической съемки.
- •7.3 Камеральные работы при тахеометрической съемке
- •Раздел 8 Мензульная съемка.
- •8.1 Назначение мензульной съемки и применяемые приборы
- •8.2 Производство мензульной съемки
- •Раздел 9 Фототопографическая съемка
- •9.1 Понятие о фототопографической съемке
- •9.2 Понятие об аэрофототопографической съемке
- •Раздел 10 Упрощенные виды съемок пониженной точности.
- •Тема 10.1 Назначение и виды упрощенных съемок. Съемки экером и мерной лентой.
- •10.2 Буссольная съемка. Барометрическое нивелирование
- •10.2.1. Понятие о барометрическом нивелировании
- •10.2.2 Буссольная съемка
- •10.3 Глазомерная съемка
Лекция 13
2.3 Система плоских прямоугольных координат
2.3.1Прямоугольные координаты
Систему плоских прямоугольных координат образуют две взаимноперпендикулярные прямые линии, называемые осями координат; точка их пересечения называется началом или нулем системы координат. Ось абсцисс - OX, ось ординат - OY.
Существуют две системы прямоугольных координат: левая и правая. В геодезии чаще применяется левая система (рис.2.3.1). Положение точки в прямоугольной системе однозначно определяется двумя координатами X и Y; координата X выражает расстояние точки от оси ОY, координата Y - расстояние от оси OY.
Рис.2.3.1
Значения координат бывают положительные (со знаком " + " ) и отрицательные (со знаком " - ") в зависимости от того, в какой четверти (квадранте) находится искомая точка (рис.2.3.1).
2.3.2 Полярные координаты
Систему полярных координат образует направленный прямой луч OX. Начало координат - точка O - называется полюсом системы, линия OX - полярной осью. Положение любой точки в полярной системе определяется двумя координатами: радиусом-вектором r (синоним полярное расстояние S) - расстоянием от полюса до точки, - и полярным углом β при точке O, образованным осью OX и радиусом вектором точки и отсчитываемым от оси OX по ходу часовой стрелки (рис.2.3.2).
Рис.2.3.2
Переход от прямоугольных координат к полярным и обратно для случая, когда начала обеих систем находятся в одной точке и оси OX у них совпадают (рис.2.3.3), выполняется по формулам :
X = S *
Cosβ,
Y = S * Sinβ,
tgβ
= Y/X,
.
(2.3.1)
Рис.2.3.3
Эти формулы получаются из решения ΔOBA по известным соотношениям между сторонами и углами прямоугольного треугольника.
Системы прямоугольных и полярных координат применяются в геодезии для определения положения точек на плоскости.
2.3.3 Картографическая проекция Гаусса
В проекции Гаусса вся поверхность Земли условно разделена на 60 зон меридианами, проведенными через 6o; форма зоны - сферический двуугольник (рис.2.3.4); счет зон ведется от Гринвичского меридиана на восток (рис. 2.3.6). Средний меридиан зоны называется осевым; долгота осевого меридиана L0 любой зоны в восточном полушарии подсчитывается по формуле:
L0=6o*n - 3o (2.3.2)
а в западном - по формуле:
L0=360o - (6o*n - 3o),
где n - номер зоны.
Рис.2.3.4 Рис.2.3.5
Представим себе, что земной эллипсоид вписан в эллиптический цилиндр. Ось цилиндра расположена в плоскости экватора и проходит через центр эллипсоида (рис.2.3.5). Цилиндр касается эллипсоида по осевому меридиану данной зоны. Вся поверхность зоны проектируется на поверхность цилиндра нормалями к эллипсоиду так, что изображение малого участка на цилиндре подобно соответствующему участку на эллипсоиде. Такая проекция называется конформной или равноугольной; в ней углы не искажаются, а длины линий искажаются по закону:
(2.3.3)
где: ΔS - величина искажения линии,
S - длина линии на эллипсоиде,
Y - удаление линии от осевого меридиана,
R - средний по линии радиус кривизны эллипсоида.
Для территории нашей страны искажения длин линий находятся в допустимых пределах для карт масштабов 1/10000 и мельче; для карт масштаба 1/5000 и крупнее приходится применять трехградусные зоны Гаусса.
Поверхность цилиндра разрезается и развертывается на плоскости; при этом осевой меридиан и экватор изображаются в виде двух взаимно перпендикулярных прямых линий. В точку их пересечения помещают начало прямоугольных координат зоны. За ось OX принимают изображение осевого меридиана зоны (положительное направление оси OX - на север), за ось OY принимают изображение экватора (положительное направление оси OY - на восток). При координате Y впереди пишут номер зоны; для исключения ее отрицательных значений условились, что в начале координат значение координаты Y равно 500 км (рис. 2.3.6)
Рис. 2.3.6
Лекция 14-15