Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабораторный практикум ВЕУ.doc
Скачиваний:
6
Добавлен:
01.07.2025
Размер:
17.53 Mб
Скачать

1. Теория горения

1.1. Виды горения. Горением называется физико-хими­ческий процесс, сопровождающийся выделением теплоты и излучением света. Сущность горения заключается в быстропротекающем процессе окисления химических элементов горючего вещества с кислородом воздуха.

Любое вещество является сложным соединением, молекулы которого могут состоять из множества свя­занных друг с другом химических элементов. Химичес­кий элемент в свою очередь состоит из однотипных ато­мов. Каждому элементу в химии присвоен определен­ный буквенный символ. К основным химическим элементам, участвующим в процессе горения, относятся кислород О, углерод С, водород Н.

Во время реакции горения происходит соединение атомов различных элементов с образованием новых ве­ществ. Основными продуктами горения являются:

• окись углерода СО — бесцветный газ без запаха, обладающий высокой токсичностью, содержание кото­рого в воздухе более 1% опасно для жизни человека (рис. 1., а);

• углекислый газ СО2 относится к инертным газам, но при содержании в воздухе 8—10% человек теряет созна­ние и может погибнуть от удушья (рис. 1.,6);

• пары воды Н2О, придающие дымовым газам белую окраску (рис. 1., в);

пары воды Н2О , придающие дымовым газам белую окраску (рис. 1., в);

• сажа и пепел, придающие дымовым газам черную окраску.

Рис. 1. Элементы реакции го­рения: а - окись углерода; 6 - углекис­лый газ; в -пары воды.

В зависимости от скорости реакции окисления раз­личают:

тление - медленное горение, вызванное недостатком кислорода в воздухе (менее 10%) или особыми свойства­ми горючего вещества. При тлении световое и тепловое излучение незначительны;

горение - сопровождается ярко выраженным пла­менем и значительным тепловым и световым излуче­ниями; по цвету пламени можно определить температу­ру в зоне горения (Табл. 1.); при пламенном горении вещества содержание кислорода в воздухе должно быть не ниже 16—18%;

Таблица 1. Цвет пламени в зависимости от температу­ры

Цвет пламени

Температура в зоне горения, °С

Серый

400

Темно-красный

525

Красный

800

Желтый

1100

Желтый с белыми вспышками

1300

Полностью белый

1500

взрыв мгновенная реакция окисления с выделени­ем огромного количества теплоты и света; образующие­ся при этом газы, быстро расширяясь, создают сферичес­кую ударную волну, движущуюся с большой скоростью.

В процессе горения в качестве окислителя может быть не только кислород, но и другие элементы. Напри­мер, медь горит в парах серы, железные опилки — в хлоре, карбиды щелочных металлов — в двуокиси угле­рода и т.д.

Горение сопровождается тепловым и све­товым излучением и образованием окиси угле­рода СО, углекислого газа СО2, паров воды Н2О, сажи и пепла.

1.2. Условия возникновения пожара. Каждое вещество может существовать в трех агрегатных состояниях: твердом, жидком и газообразном. В твердом и жидком состояниях молекулы вещества тесно связаны друг с другом, и молекулам кислорода практически невозмож­но вступить с ними в реакцию. В газообразном (парооб­разном) состоянии молекулы вещества движутся на большом расстоянии друг от друга и могут быть легко окружены молекулами кислорода, что создает условия для горения.

Горение является началом пожара. При этом проис­ходит окисление миллионов молекул паров, которые распадаются на атомы и в соединении с кислородом образуют новые молекулы. Во время распада одних и образования других молекул происходит выделение тепловой и световой энергии. Часть выделившейся теп­лоты возвращается к очагу пожара, что способствует более интенсивному парообразованию, активизации го­рения и, следовательно, выделению еще большего коли­чества теплоты.

Происходит своеобразная цепная реакция, приводя­щая к разрастанию пламени и развитию очага пожара (рис.2.).

Цепная реакция пожара происходит при одновре­менном действии трех факторов: наличии горючего ве­щества, которое будет испаряться и гореть; достаточ­ном количестве кислорода для окисления элементов ве­щества; источнике теплоты, повышающем температуру до границы воспламенения. При отсутствии одного из факторов пожар не может начаться. Если во время по­жара удается один из факторов исключить, — пожар прекращается.

Рис.2. Цепная реакция горения: 1 — горючее вещество; 2 — кислород; 3 — пары; 4, 5 — молекулы в процессе горения

Пожар возникает только при одновремен­ном действии трех факторов: наличии горюче­го вещества, достаточном количестве кисло­рода, высокой температуре.

1.3. Треугольник горения ("пожарный треугольник" Для процесса горения необходимы соответствующие условия: горючее вещество, что способно самостоятельно гореть после удаления источника воспламенения. Воздух (кислород), а также источник воспламенения, что должен иметь определенную температуру и достаточный запас теплоты. Если одно из этих условий отсутствует, процесса горения не будет. Так называемый пожарный треугольник (кислород воздуха, теплота, горючее вещество) могут дать простейшее представление о трех факторах пожара, необходимых для существования пожара. Символический пожарный треугольник, представленный на (рис. 3.), наглядно иллюстрирует это положение и дает представление о важных факторах, необходимых для предотвращения и тушения пожаров:

• если одна из сторон треугольника отсутствует, пожар не может начаться;

• если одну из сторон треугольника исключить, пожар потухнет.

Однако пожарный треугольник – простейшее представление о трех факторах, необходимых для существования пожара, – не достаточным образом поясняет природу пожара. В частности, он не включает цепную реакцию, что возникает между горючим веществом, кислородом и теплом в результате цепной реакции. Пожарный тетраэдр (рис.4.) – более наглядно иллюстрирует процесс горения (тетраэдр – это многоугольник с четырьмя треугольными гранями). Он позволяет более полно понять процесс горения, в связи с тем, что в нем есть место для цепной реакции и каждая грань соприкасается с тремя остальными.

Основная разница между пожарным треугольником и пожарным тетраэдром состоит в том, что тетраэдр показывает, каким образом за счет цепной реакции поддерживается пламенное горение – грань цепной реакции удерживает остальные три грани от падения.

Этот важный фактор используется во многих современных огнетушителях, автоматических системах тушения пожаров и предотвращении взрывов – огнетушащие вещества воздействуют на цепную реакцию и прерывают процесс ее развития. Пожарный тетраэдр дает наглядное представление о том, каким образом можно потушить пожар. Если удалить горючее вещество, или кислород, или источник теплоты, пожар прекратится.

Если цепная реакция будет прервана, тогда в результате постепенного уменьшения образования паров и выделения теплоты пожар также будет потушен. Вместе с тем, при тлении или возможного вторичного воспламенения необходимо обеспечивать дальнейшее охлаждение.

Рис. 3. Пожарный треугольник

1 - горючее вещество

2 - источник теплоты

3 - кислород воздуха

Рис. 4. Пожарный тетраэдр

1 - горючее вещество

2 - источник теплоты о

3 - кислород воздуха

4 - цепная реакция

1.4. Распространение пожара. Если пожар не удается локализовать в ранней стадии, то интенсивность его распространения нарастает, чему способствуют следую­щие факторы.

Теплопроводность (рис. 5, а): большинство судо­вых конструкций выполнено из металла, обладающего высокой теплопроводностью, что способствует переда­че большого количества теплоты и распространению пожара с одной палубы на другую, из одного отсека в другой. Под воздействием теплоты от пожара начинает желтеть, а затем вспучиваться краска на переборках, повышается температура в соседнем с пожаром отсеке и при наличии в нем горючих веществ возникает допол­нительный очаг пожара.

Рис.5. Распространение пожара: а — теплопроводностью; б — лучистым теплообменом; в — конвективным теп­лообменом; 1 — кислород; 2 — теплота

Лучистый теплообмен (рис.5.,б): высокая темпера­тура в очаге пожара способствует образованию лучевых потоков теплоты, распространяющихся прямолинейно во все стороны. Встречающиеся на пути теплового по­тока судовые конструкции частично поглощают тепло­ту потока, что приводит к повышению их температуры. Вследствие лучистого теплообмена могут воспламе­ниться горючие материалы. Особенно интенсивно он действует внутри судовых помещений. Кроме распро­странения пожара лучистый теплообмен создает зна­чительные трудности при операции по ликвидации пожара и требует применения специальных защитных средств для людей.

Конвективный теплообмен (рис.5.,в): при распро­странении горячего воздуха и нагретых газов по судо­вым помещениям переносится значительное количество теплоты от очага пожара. Нагретые газы и воздух под­нимаются, их место занимает холодный воздух - со­здается естественный конвективный теплообмен, кото­рый может стать причиной возникновения дополни­тельных очагов пожара.

Распространению пожара способствуют следующие факторы: теплопроводность ме­таллических конструкций судна; лучистый теплообмен, вызванный высокой температу­рой; конвективный теплообмен, возникающий при движении потоков нагретых газов и воздуха.

1.5. Опасность пожара. Во время пожара создается серьезная опасность для здоровья и жизни людей. К опасным факторам пожара относятся, следующие.

Пламя: при непосредственном воздействии на людей может вызвать местные и общие ожоги и поражение дыхательных путей. При тушении пожара без специаль­ных защитных средств следует находиться на безопас­ном расстоянии от очага загорания.

Теплота: для человека опасна температура выше 50 °С. В районе пожара на открытом пространстве тем­пература поднимается до 90 °С, а в закрытых помеще­ниях - 400 °С. Непосредственное воздействие потоков теплоты может привести к обезвоживанию организма, ожогам, поражению дыхательных путей. Под воздейст­вием высокой температуры у человека могут начаться сильное сердцебиение и нервное возбуждение с пораже­нием нервных центров.

Газы: химический состав газов, образующихся при пожаре, зависит от горючего вещества. Во всех газах содержится двуокись углерода СО2 (углекислый газ) и окись углерода СО. Наиболее опасна для человека окись углерода. Два-три вдоха воздуха, содержащего 1,3% СО, приводят к потере сознания, а несколько минут дыхания — к гибели человека. Избыточное со­держание двуокиси углерода в воздухе уменьшает по­ступление кислорода в легкие, что отрицательно сказы­вается на жизнедеятельности человека (Табл.2.).

Таблица 2. Состояние человека в зависимости от % содержания кислорода в воздухе

Состояние человека

Содержание кислорода в воздухе, %

Нормальная жизнедеятельность

21

Нарушение мышечной деятельности

До 15

Ощущение усталости, нарушение ясности сознания

10-14

Потеря сознания

Ниже 10

При воздействии высоких температур на синтети­ческие материалы, происходит выделение газов насыщенных высокотоксичны­ми веществами, содержание которых в воздухе даже в незначительной концентрации представляет серьезную угрозу жизни человека.

Дым: частицы несгоревшего углерода и других ве­ществ, находящиеся в воздухе во взвешенном состоя­нии, образуют дым, который раздражает глаза, носо­глотку и легкие. Дым перемешан с газами, и в нем со­держатся все токсичные вещества, присущие газам.

Взрыв: пожар может сопровождаться взрывами. При определенной концентрации паров горючих ве­ществ в воздухе, изменяющейся под действием теплоты, создается взрывоопасная смесь. Причиной взрыва могут стать избыточный поток теплоты, разряды стати­ческого электричества или детонирующие удары, а также чрезмерное повышение давления в сосудах, нахо­дящихся под давлением. Взрывоопасная смесь может образоваться при содержании в воздухе паров нефте­продуктов и других легковоспламеняющихся жидкос­тей, угольной пыли, пыли от сухих продуктов. Последствиями взрыва могут быть серьезные разрушения ме­таллических конструкций судна и гибель людей.

Пожар представляет серьезную опасность для судна, здоровья и жизни людей. Основными факторами опасности явля­ются: пламя, теплота, газы и дым. Особенно серьезную опасность представляет вероят­ность взрыва.