
- •Предмет аналитической химии
- •1. Качественный анализ
- •1.1 Цель, возможные методы. Качественный химический анализ неорганических и органических веществ.
- •1.3. Качественные реакции важнейших катионов
- •Качественные реакции некоторых катионов IV – V аналитических групп
- •2. Методы количественного анализа
- •2.1. Выбор метода анализа
- •2.2. Аналитический сигнал. Измерение
- •3. Титриметрический анализ
- •3.1. Сущность титриметрического анализа
- •3.2. Основные приемы титрования
- •3.3. Расчеты в титриметрическом анализе
- •3.3.1. Химический эквивалент
- •3.3.2. Расчет результата прямого титрования при разных способах выражения концентрации раствора
- •3.3.3. Расчет результата в методах обратного титрования
- •3.4. Понятие о кривых титрования
- •3.5. Стандартизация растворов титрантов
- •3.6. Основные методы титриметрического анализа
- •3.7. Кислотно-основное титрование
- •3.7.1. Рабочие растворы
- •3.7.2. Кривые титрования и выбор индикатора
- •3.7.3. Практическое применение методов кислотно-основного титрования
- •3.7.4. Общая оценка метода
- •3.8. Решение типовых задач по теме «титриметрический анализ. Кислотно-основное титрование»
- •4. Комплексонометрическое титрование
- •4.1. Понятие о комплексонах
- •4.2. Рабочие растворы
- •4.3. Индикаторы в комплексонометрии
- •4.4. Выполнение комплексонометрических определений
- •4.5. Практическое применение комплексонометриии
- •4.5.1. Определение жесткости воды
- •4.5.2. Определение кальция и магния в различных растворах и материалах
- •4.6. Общая оценка метода
- •4.7. Решение типовых задач по теме «комплексонометрическое титрование»
- •5. Окислительно-восстановительное титрование
- •5.1. Окислительно-восстановительные системы
- •5.2. Основные факторы, влияющие на потенциал
- •5.3. Константы равновесия окислительно-восстановительных реакций
- •5.4. Кривые титрования
- •5.4.1. Построение кривой окислительно-восстановительного титрования
- •5.4.2. Влияние условий на ход кривых титрования
- •5.4.3. Определение точки эквивалентности
- •5.5. Окислительно-восстановительные индикаторы
- •5.6. Основные окислительно-восстановительные методы анализа
- •5.6.1. Перманганатометрия
- •5.6.2. Хроматометрия
- •5.6.3. Иодометрия
- •5.7. Решение типовых задач по теме «окислительно-восстановительное титрование»
- •6. Гравиметрический анализ
- •6.1. Равновесие в растворах малорастворимых электролитов
- •6.1.1. Растворимость осадка в присутствии общих ионов
- •6.1.2. Химические методы разделения ионов в количественном анализе
- •6.3. Общая характеристика метода
- •6.4. Осаждение
- •6.5. Фильтрование и промывание осадка
- •6.6. Высушивание и прокаливание осадка
- •6.7. Расчеты в гравиметрическом анализе
- •6.8. Примеры практического применения методов гравиметрического анализа
- •6.9. Решение типовых задач по теме «гравиметрический анализ»
- •Приложение Таблица 1 - Важнейшие кислотно-основные индикаторы
Аналитическая химия и физико-химические методы анализа
Предмет аналитической химии
Аналитическая химия – это наука о методах определения химического состава вещества и его структуры. Предметом аналитической химии является разработка методов и практическое выполнение анализов, исследование теоретических основ аналитических методов, к которым относятся: изучение форм существования элементов и их соединений в различных средах и агрегатных состояниях, определение состава и устойчивости координационных соединений, оптических, электрохимических и других характеристик вещества, исследование скоростей химических реакций, определение метрологических характеристик методов.
Теоретическую основу аналитической химии составляют фундаментальные законы естествознания: периодический закон Д.И. Менделеева, законы сохранения энергии и массы вещества, законы постоянства состава, действующих масс и т.д. Аналитическая химия тесно связана с физикой, неорганической, физической, коллоидной химией, электрохимией, термодинамикой, теорией растворов, метрологией. В современной аналитической химии используются учения о координационных соединениях, квантово-химических методах и теории строения вещества, о кинетике реакций.
.
1. Качественный анализ
1.1 Цель, возможные методы. Качественный химический анализ неорганических и органических веществ.
Качественный анализ имеет своей целью обнаружение определенных веществ или их компонентов в анализируемом объекте. Обнаружение проводится путем идентификации веществ, то есть установления тождественности (одинаковости) АС анализируемого объекта и известных АС определяемых веществ в условиях применяемого метода анализа. Для этого данным методом предварительно исследуют эталонные вещества , в которых наличие определяемых веществ заведомо известно. Например, установлено, что присутствие спектральной линии с длиной волны 350,11 нм в эмиссионном спектре сплава, при возбуждении спектра электрической дугой, свидетельствует о наличии в сплаве бария; посинение водного раствора при добавлении к нему крахмала является АС на присутствие в нем I2 и наоборот.
Качественный анализ всегда предшествует количественному.
В настоящее время качественный анализ выполняют инструментальными методами: спектральными, хроматографическими, электрохимическими и др. Химические методы используют на отдельных стадиях инструментальных (вскрытие пробы, разделение и концентрирование и др.), но иногда с помощью химического анализа можно получить результаты более просто и быстро, например, установить наличие двойных и тройных связей в непредельных углеводородах при пропускании их через бромную воду или водный раствор KMnO4. При этом растворы теряют окраску.
Детально разработанный качественный химический анализ позволяет определять элементный (атомный), ионный, молекулярный (вещественный), функциональный, структурный и фазовый составы неорганических и органических веществ.
При анализе неорганических веществ основное значение имеют элементный и ионный анализы, так как знание элементного и ионного состава достаточно для установления вещественного состава неорганических веществ. Свойства органических веществ определяются их элементным составом, но также и структурой, наличием разнообразных функциональных групп. Поэтому анализ органических веществ имеет свою специфику.
Качественный химический анализ базируется на системе химических реакций, характерных для данного вещества - разделения, отделения и обнаружения.
К химическим реакциям в качественном анализе предъявляют следующие требования.
1. Реакция должна протекать практически мгновенно.
2. Реакция должна быть необратимой.
3. Реакция должна сопровождаться внешним эффектом (АС):
а) изменением окраски раствора;
б) образованием или растворением осадка;
в) выделением газообразных веществ;
г) окрашиванием пламени и др.
4. Реакция должна быть чувствительной и по возможности специфичной.
Реакции, позволяющие получить внешний эффект с определяемым веществом, называют аналитическими, а добавляемое для этого вещество - реагентом. Аналитические реакции, проводимые между твердыми веществами, относят к реакциям «сухим путем», а в растворах - «мокрым путем».
К реакциям «сухим путем» относятся реакции, выполняемые путем растирания твердого исследуемого вещества с твердым реагентом, а также путем получения окрашенных стекол (перлов) при сплавлении некоторых элементов с бурой.
Значительно чаще анализ проводят «мокрым путем», для чего анализируемое вещество переводят в раствор. Реакции с растворами могут выполняться пробирочным, капельным и микрокристаллическим методами. При пробирочном полумикроанализе его выполняют в пробирках вместимостью 2-5см3. Для отделения осадков используют центрифугирование, а выпаривание ведут в фарфоровых чашечках или тиглях. Капельный анализ осуществляют на фарфоровых пластинках или полосках фильтрованной бумаги, получая цветные реакции при добавлении к одной капле раствора вещества одной капли раствора реактива. Микрокристаллический анализ основан на обнаружении компонентов с помощью реакций, в результате которых образуются соединения с характерным цветом и формой кристаллов, наблюдаемых в микроскоп.
Для качественного химического анализа используют все известные типы реакций: кислотно-основные, окислительно-восстановительные, осаждения, комплексообразования и другие.
Качественный анализ растворов неорганических веществ сводится к обнаружению катионов и анионов. Для этого используют общие и частные реакции. Общие реакции дают сходный внешний эффект (АС) со многими ионами (например, образование катионами осадков сульфатов, карбонатов, фосфатов и т.д.), а частные - с 2-5 ионами. Чем меньше число ионов дают сходный АС, тем селективнее (избирательнее) считается реакция. Реакция называется специфической, когда позволяет обнаружить один ион в присутствии всех остальных. Специфической, например, на ион аммония является реакция: Аммиак обнаруживают по запаху или по посинению красной лакмусовой бумажки, смоченной в воде и помещенной над пробиркой.
Селективность реакций можно повысить, изменяя их условия (рН) или применяя маскирование. Маскирование заключается в уменьшении концентрации мешающих ионов в растворе меньше предела их обнаружения, например путем их связывания в бесцветные комплексы.
Если состав анализируемого раствора несложен, то его после маскировки анализируют дробным способом. Он заключается в обнаружении в любой последовательности одного иона в присутствии всех остальных с помощью специфических реакций, которые проводят в отдельных порциях анализируемого раствора. Поскольку специфических реакций немного, то при анализе сложной ионной смеси используют систематический способ. Этот способ основан на разделении смеси на группы ионов со сходными химическими свойствами путем перевода их в осадки с помощью групповых реактивов, причем групповыми реактивами воздействуют на одну и ту же порцию анализируемого раствора по определенной системе, в строго определенной последовательности. Осадки отделяют друг от друга (например, центрифугированием), затем растворяют определенным образом и получают серию растворов, позволяющих в каждом обнаружить отдельный ион специфической реакцией на него.
1.2.ТЕХНИКА ВЫПОЛНЕНИЯ ОСНОВНЫХ ОПЕРАЦИЙ
Реакции в пробирке. Исследуемый раствор (2-3 мл) вносят в пробирку капиллярной пипеткой так, чтобы кончик пипетки не коснулся стенок пробирки. Соблюдая условия проведения реакции, прибавляют 2-3 мл раствора аналитического реагента. Наблюдают и описывают аналитический эффект реакции (выпадение осадка, выделение газа, изменение цвета).
Реакции методом растирания. Небольшое количество в вещества растирают в фарфоровой ступке с примерно равным количеством твердого реагента. Наблюдают внешний эффект реакции.
Реакции с использованием экстракции. Реакции проводят в пробирках с притертыми пробками. Для понижения предела обнаружения вещества соотношение объемов органической и водной фаз должно быть: Vo:Vв = 1:3; 1:4. К нескольким каплям испытуемого вещества добавляют все необходимые реагенты и органический растворитель (5-10 капель), закрывают пробирку пробкой и взбалтывают в течение 1-2 мин. После расслоения наблюдают окраску или люминесценцию слоя органического растворителя.
Нагревание и выпаривание. При проведении многих реакций требуется нагревание. Нагревать растворы в пробирках на открытом пламени горелки запрещается. Поэтому пробирки с раствором нагревают на водяной бане, т.е. в сосуде, заполненном горячей дистиллированной водой. Если необходимо нагреть большой объем раствора в стакане или колбе, нагревание ведут, поставив стакан или колбу на асбестовую сетку электроплитки.
Выпаривание растворов с целью концентрирования или упаривания досуха проводят в фарфоровых чашках или тиглях. Рекомендуется выполнять эту операцию на песочных банях или электронагревателях в вытяжном шкафу. Растворение сухого остатка проводят после охлаждения чашки или тигля во избежание разбрызгивания.
Осаждение. Для получения осадка к нескольким каплям исследуемого раствора (обычно в центрифужной пробирке) прибавляют пипеткой указанное число капель реагента, предварительно создав нужные условия. После сливания исследуемого раствора и реагента содержимое пробирки необходимо тщательно перемешать и, если нужно, нагреть на водяной бане.
Отделение раствора от осадка. Осадок от раствора чаще всего отделяют центрифугированием с помощью электрических центрифуг. Если имеется большое количество жидкости, а осадок и другие твердые вещества не представляют интереса, можно часть раствора для анализа отобрать при помощи пипетки. Для отделения осадка от больших количеств жидкости прибегают к фильтрованию.
При использовании центрифуги необходимо строго соблюдать следующие правила. Для центрифугирования следует использовать специальные конические пробирки, по возможности одинаковые по размеру и форме. Жидкость в пробирку наливают так, чтобы уровень ее был на 6-8 мм ниже края во избежание попадания жидкости в гильзу центрифуги. Для сохранения баланса каждая пробирка, содержащая пробу, должна быть уравновешена другой пробиркой, содержащей приблизительно такой же объем воды. Предохранительную крышку центрифуги поднимают только после ее полной остановки.
Промывание осадка. Осадок после отделения раствора загрязнен компонентами раствора. Поэтому для достижения полного разделения его необходимо промыть. Для этого чаще всего применяют дистиллированную воду. Если осадок способен переходить в коллоидное состояние, его промывают раствором электролита (коагулянта). Достаточно промыть осадок 2-3 раза. Нередко рекомендуется промывать осадки горячей жидкостью. Для промывания осадка в пробирку добавляют 10-15 капель промывной жидкости, тщательно перемешивают смесь стеклянной палочкой, помещают пробирку в водяную баню. После нагревания в течение 1-2 минут полученную смесь центрифугируют и отделяют центрифугат.
Растворение осадка. Промытый осадок растворяют в той же пробирке, прибавляют по каплям растворитель при перемешивании и нагревании (если необходимо) на водяной бане. В том случае, когда после растворения осадка раствор нужно упарить, его из пробирки переносят в фарфоровую чашку или тигель.
«Открытие иона». Для обнаружения любого иона в пробирку помещают 1-2 капли исследуемого раствора и 2-3 капли реактива, наблюдают аналитический эффект. Для открытия катионов, как правило, используются соли натрия, калия или аммония, для обнаружения анионов – нитраты или хлориды.
Выполнение капельных реакций на бумаге. Конец капилляра пипетки погружают на 1-2 мм в соответствующий раствор и дают жидкости подняться в пипетку под действием капиллярных сил. Далее, держа пипетку вертикально, прикасаются ее кончиком к полоске фильтровальной бумаги и, слегка надавливая, выжидают, пока на бумаге не получится влажное пятно диаметром несколько миллиметров. После этого пипетку быстро удаляют, а к центру влажного пятна, соблюдая те же правила, прикасаются капилляром с раствором соответствующего реагента.