
- •1.Методика расчета передачи винт–гайка качения
- •2.Направляющие качения, дост./недост., методика расчета.
- •3.Технико-экономические показатели станков и их оценка.
- •4.Показатели производительности автоматизированного оборудования в зависимости от формы и категории производительности.
- •7 Методика расчета револьверной головки (зп, торцевая зубчатая муфта, пружины).
- •8 Методика расчета (выбора) приводного двигателя револьверной головки.
- •9 Методы реализации электроавтоматики технологического оборудования.
- •12 Методика выбора приводного двигателя автооператора.
- •13 Методика расчета элементов привода (зубчатые и червячные передачи, подшипники, муфты)
- •17 Методика выбора приводного гидромотора и зажимного гидроцилиндра.
- •19. Разработать бесконтактную схему для управления револьверной головкой (л96, строки 3,4).
- •22 Особенности кинематического расчета комбинированного привода главного движения
- •23 Последовательность и методика силового расчета механизмов и элементов привода главного движения.
- •26.Требования, предъявляемые к шпиндельным узлам
- •30. Привести эскиз детали поз. 5 (лист 97) с простановкой посадок, отклонений геометрической формы поверхностей, технических требований и термообработки.
- •32 Гидростатические направляющие получают все
- •Привести эскиз детали поз.11 (лист 99) с простановкой посадок, отклонений геометрической формы поверхностей, технических требований и термообработки.
- •42.Тяговые устройства в приводах подач станков, особенности, способы создания натяга и повышения жесткости, предохранения от поломки.
- •52. Методика расчёта шпинделя на жесткость
- •57 Требования, предъявляемые к шпиндельным узлам
- •74.Шаговые (импульсные) двигатели
- •76. Назначение и основные типы направляющих
- •78. Расчет мощности резания
- •77. Легированные стали; цель легирования стали. Наиболее распространенные легирующие элементы.
- •79. Испытания станков в работе
- •81 Движения в станках; движения формообразования; методы получения поверхностей на станках.
- •82 Общая методика анализа кинематики станков.
- •83 Синхронные электродвигатели. Особенности их использования в автоматизированном электроприводе.
- •84. Что вы можете сказать о технических характеристиках станка и его системы управления по обозначению модели станка?
- •87. Последовательность и методика силового расчета механизмов и конструктивных элементов поворотного стола (лист 123): торцевая зубчатая муфта, червячная передача, выбор электродвигателя.
- •88. Гидравлические цилиндры, назначение, принцип действия, конструктивные схемы, рабочие характеристики.
- •89. Основные этапы разработки математических моделей станков и станочных комплексов
- •92 Методика расчета основных деталей привода: зубчатых передач, зубчатой ременной передачи.
- •93 Зуборезный инструмент; технологические возможности, достоинства и недостатки методов копирования и обката.
- •94. Аппаратура управления давлением; назначение, принципы действия. Основные конструктивные схемы аппаратов. Варианты их установки и использования в гидро-пневмоприводах станков.
- •99. Классификация систем чпу по виду рабочих движений. Обозначение станков с чпу в зависимости от применяемой системы управления.
- •2. Позиционная
- •100.Привести эскиз детали поз.7 (лист 92).
- •101. Состав, компоновка и планировка ртк для обработки деталей типа тел вращения (на базе мрк50)…(лист 88).
- •104. Показатели надежности оборудования и их модели. Прогнозирование надежности станков и станочных систем.
- •106. Типы и разновидности транспортно-накопительных систем, используемых в гап: область испоьзования.
- •107. Дайте описание конструкций транспортных устройств, показанных на листах 86, 87. Предложите методику расчета основных механизмов данных устройств.
- •108. Аппаратура регулирования расхода: назначение, принципы регулирования и стабилизации расхода, основные конструктивные схемы аппаратов, варианты их установки и использования.
- •109. Протяжки: разновидности протяжек и их конструктивные особенности. Схема расчета конструктивных элементов и проверочный расчет на прочность.
- •113. Типы и разновидности режущего инструмента, используемого для многоцелевых станков. Схема расчета исполнительных размеров размерных инструментов с учетом допуска на диаметр отверстия.
- •114 Гидростатические опоры шпинделей, особенности конструкций. Методика расчета.
- •116. Лист 120. Дать описание конструкции привода главного движения станка ир500пмф4. Обоснуйте необходимость разгрузки шпинделя от приводного элемента.
- •118. Регулирование скорости электропривода асинхронным электродвигателем. Преимущества частотного регулирования.
- •119. Особенности систем чпу типа nc, snc, cnc, dnc.
- •122. Компоновка станков. Структурный анализ базовых компоновок.
- •123. Типы ременных передач: особенности, достоинства и недостатки каждой из них. Обоснуйте применение зубчатой ременной передачи в приводе главного движения станка ир320пмф4.
- •124. Достоинства и недостатки гидро-пневмоприводов по сравнению с другими приводами.
83 Синхронные электродвигатели. Особенности их использования в автоматизированном электроприводе.
У синхронных электрических машин ротор в установившемся режиме вращается с угловой скоростью вращающегося магнитного поля, создаваемого токами в фазных обмотках статора, подобного статору асинхронной машины. Это достигается тем, что ротор синхронной машины представляет собой обычно электромагнит или реже постоянный магнит с числом пар полюсов, равным числу пар полюсов вращающегося магнитного поля. Взаимодействие полюсов вращающегося магнитного поля и полюсов ротора обеспечивает постоянную частоту вращения последнего независимо от момента на валу. Это свойство синхронных машин позволяет применять их в качестве двигателей для привода механизмов с постоянной частотой вращения. Распространенность синхронных двигателей не столь широка, как асинхронных, но в ряде случаев они необходимы. Единичная мощность синхронного двигателя в приводах большой мощности достигает нескольких десятков мегаватт.
Устройство синхронной машины
Основными частями синхронной машины являются статор и ротор. Сердечник статора собран из изолированных друг от друга пластин электротехнической стали и укреплен внутри массивного корпуса. В пазах с внутренней стороны статора размещена в большинстве случаев трехфазная обмотка.
Ротор синхронной машины представляет собой электромагнит — явнополюсный (рис. 9.1, где 1 — полюсы; 2 — полюсные катушки; 3 — сердечник ротора; 4 — контактные кольца) или неявнополюсный (рис. 9.2, где 1— сердечник ротора; 2 — пазы с обмоткой; 3 — контактные кольца). Ток в обмотку ротора поступает через контактные кольца и щетки от внешнего источника постоянного тока — возбудителя.
Рис. 9.1
Синхронные двигатели малой мощности
Свойство синхронных двигателей сохранять неизменной частоту вращения при изменении тормозного момента на валу достигается усложнением устройства ротора по сравнению с асинхронными: к обмотке подключается через скользящие контакты специальный источник постоянного тока.
В синхронных двигателях малой мощности роль вращающегося постоянного электромагнита выполняет постоянный магнит, изготовленный из магнитно-твердого материала и укрепленный на оси ротора. Пуск такого двигателя в ход осуществляется обычно непосредственным подключением его фазных обмоток статора к электрической сети. Для возникновения асинхронного момента при пуске двигателя в полюсах постоянного магнита располагаются стержни короткозамкнутой обмотки.
Другой разновидностью синхронных двигателей малой мощности являются так называемые синхронные реактивные двигатели. Особенность этих двигателей заключается в том, что их ротор имеет магнитную анизотропию, т. е. различное магнитное сопротивление в различных радиальных направлениях. На рис. 9.20 приведен поперечный разрез конструкции двухполюсного анизотропного ротора, представляющего собой набор пакетов из листовой электротехнической стали, разделенных слоями алюминия (заштрихованная часть). Продольное направление легкого намагничивания пакетов листовой электротехнической стали определяет форму магнитных линий поля токов статора. Искривление магнитных линий поля токов статора при наличии тормозного момента на валу двигателя создает вращающий момент, уравновешивающий тормозной момент.
К общим недостаткам синхронных двигателей малой мощности относится отсутствие возможности регулировать реактивную мощность и запас устойчивости.
Рис. 9.20