- •Раздел №1. Введение. Основные понятия.
- •Примеры изменения свойств и применения веществ в зависимости от числа атомов с в цепи
- •Вопросы для самостоятельной проработки:
- •Раздел №2. Номенклатура и классификация полимеров
- •2.1. Номенклатура полимеров
- •2.1.1. Номенклатура, основанная на названии мономеров
- •2.1.2. Номенклатура, основанная на химической структуре полимерной цепи (систематическая номенклатура iupac)
- •Названия основных полимеров
- •2.1.3. Случайная номенклатура (в т.Ч. Торговые марки полимеров)
- •Торговые марки полипропилена
- •Основные зарубежные аналоги отечественного полипропилена
- •2.2. Классификация полимеров
- •2.2.1. По происхождению
- •2.2.2. По областям применения
- •2.2.3. По топологии (геометрии скелета макромолекул)
- •Типы геометрии скелета макромолекул
- •2.2.4. По наличию в макромолекуле одного или нескольких типов мономерных звеньев
- •Виды сополимеров
- •2.2.5. Химическая классификация
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения*
- •Раздел №3. Основные характеристики макромолекул
- •3.1. Молекулярная масса (мм), молекулярно-массовое распределение (ммр)
- •3.1.1. Способы усреднения молекулярных масс
- •3.1.2. Молекулярно- массовое распределение (ммр)
- •3.2. Конфигурация макромолекулы
- •Локальная изомерия (изомерия положения).
- •Оптическая изомерия (стереоизомерия)
- •3.3. Конформация макромолекул
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №4. Элементы, способные к образованию полимеров
- •4.1. Кислород, сера, селен
- •4.2. Азот, бор, алюминий
- •4.3. Углерод
- •4.4. Кремний
- •4.5. Фосфор
- •4.6. Виды полимеров
- •4.7. Реакции синтеза макромолекул
- •Вопросы для самостоятельной проработки:
- •Раздел №5. Термодинамические условия проведения полимеризации.
- •Вопросы для самостоятельной проработки:
- •Раздел №6. Термодинамические условия проведения реакций синтеза макромолекул (продолжение предыдущей лекции)
- •6.1. Термодинамика поликонденсации
- •Химия образования макромолекул
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №7. Радикальная полимеризация
- •7.1. Мономеры, способные вступать в реакции радикальной полимеризации
- •7.2. Инициирование (образование свободных радикалов)
- •7.3. Скорость инициирования. Факторы, влияющие на скорость инициирования
- •7.4. Влияние температуры на ход процесса. Эффект клетки.
- •7.5. Окислительно-восстановительные реакции инициирования
- •7.6. Инициирование под действием различных излучений
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №8. Радикальная полимеризация
- •8.1. Рост цепи
- •8.2. Обрыв цепи
- •8.3. Передача цепи
- •8.4. Кинетика реакций радикальной полимеризации
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №9. Ионная полимеризация. Катионная полимеризация.
- •9.1. Общие черты у радикальной и ионной полимеризации
- •9.2. Особенности ионной полимеризации по сравнению с радикальной полимеризацией
- •Примеры полимеризации различных ненасыщенных мономеров
- •9.3. Катионная полимеризация
- •9.3.1. Инициаторы (катализаторы) катионной полимеризации
- •Значения эффективного отношения константы роста к константе обрыва для различных кислот
- •Кислоты Льюиса
- •Ониевые соли
- •9.3.2. Реакция обрыва цепи в катионной полимеризации
- •9.3.3. Кинетика катионной полимеризации
- •9.3.4. Влияние природы среды
- •Влияние различных сред на скорость протекания полимеризации α-метилстирола под действием SnCl4•h2o
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 10. Анионная полимеризация
- •10.1. Мономеры, вступающие в процесс анионной полимеризации
- •10.2. Инициаторы анионной полимеризации
- •Слабые основания
- •Основания средней силы
- •Сильные основания
- •10.3. Реакции роста цепи
- •10.4. Реакции обрыва и передачи цепи
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Вопрос 1319 Раздел №11. Координационно-ионная полимеризация. Стереорегулирование.
- •Микроструктура полимеров изопрена, полученных в различных условиях.
- •Катализаторы Циглера-Натта
- •Строение бутадиена при использовании различных катализаторов
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Вопрос 1319
- •Раздел №12. Сополимеризация
- •12.1. Радикальная сополимеризация
- •Элементарные реакции роста цепи
- •Константы радикальной сополимеризации некоторых мономеров.
- •12.2. "Схема q - е" Алфрея – Прайса
- •12.3. Ионная сополимеризация
- •Влияние механизма реакции на состав продукта сополимеризации эквимолярной смеси стирола с метилметакрилатом
- •12.4. Способы проведения полимеризации
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 13. Поликонденсация
- •Основные особенности процессов полимеризации и поликонденсации
- •13.1. Классификация процессов пк
- •13.2. Полимеры, получаемые пк
- •Поликарбонаты
- •Полисульфоны
- •Полисилоксаны
- •13.3. Механизм и кинетические закономерности пк
- •13.4. Реакции ограничения роста цепи (степени полимеризации) в процессах пк
- •13.5. Методы проведения пк
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 14. Химические превращения и модификации полимеров
- •Методы химического превращения полимеров
- •Вопросы для самостоятельной проработки:
- •Раздел № 15. Старение и стабилизация полимеров
- •Раздел № 16. Модели и физические свойства макромолекул Гибкость макромолекулы
- •Модели макромолекул
- •Величины длины звена и числа мономерных звеньев в сегменте
- •Результаты математического эксперимента для цепей полиэтилена различной длины
- •Физико-механические свойства полимеров
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 17. Агрегатные, фазовые и физические состояния полимеров Высокоэластическое состояние
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 18. Агрегатные, фазовые, физические состояния полимеров (продолжение)
- •Особенности полимерных стекол
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 19. Кристаллическое состояние полимеров
- •Вопросы для самостоятельной проработки:
- •Раздел № 20. Вязко-текучее состояние полимеров
- •20.1. Свойства растворов полимеров
- •20.2. Методы исследования растворов полимеров
- •Вопросы для самостоятельной проработки:
- •Содержание:
Раздел № 15. Старение и стабилизация полимеров
Сразу же после синтеза и далее в процессе эксплуатации полимеры начинают разрушаться или «стареть» под действием самых разных внешних воздействий. К их числу относятся:
Механические воздействия и деформации.
Термическое воздействие.
Действие различных по своей природе химических веществ (жидких и газообразных).
Действие излучений высокой энергии, включая солнечный свет.
На практике, как правило, при деструкции полимеров одновременно действует несколько видов воздействия.
Результатом таких воздействий может быть разрыв макромолекул и падение молекулярной массы, изменение химического строения макромолекул без изменения степени полимеризации и возникновение трехмерно-сшитых и разветвленных структур. Практически во всех случаях такие неконтролируемые изменения приводят к ухудшению комплекса эксплуатационных свойств полимера и (или) возможности его переработки в изделия.
Защита полимеров от действия агрессивных факторов позволяет существенно продлить как время их жизни, так и ужесточить режим эксплуатации полимеров, что эквивалентно значительному уменьшению расхода полимерных материалов с соответствующими экономическими и экологическими последствиями.
Кратко рассмотрим особенности различных видов деструкции.
Механическая деструкция.
П
напряжение
При длительной механической нагрузке происходит процесс накопления повреждений с участием теплового движения (тепловых флюктуаций) с последующим разрушением материала. Зависимость долговечности материала, находящегося под нагрузкой, от напряжения и температуры выражается уравнением Журкова:
где τ – долговечность, т. е. время от момента приложения силы до разрыва образца;
U0 – энергия активации разрыва химической связи в полимере;
σ – приложенное напряжение;
γ – структурно-чувствительный коэффициент;
τ0 – время тепловых колебаний.
Как видно из уравнения, с ростом приложенной нагрузки долговечность материала падает.
Тепловая деструкция (пиролиз).
Скорость термической деструкции сильно зависит от химической структуры полимера.
Например
Полимер |
Тразл., ◦С |
|
320 |
|
310 |
|
150 |
|
220 |
|
400 |
|
450 |
Видно, что термостойкость виниловых полимеров, построенных из C, H, O, Cl, относительно невысока, но значительно возрастает при замене H на F или при переходе к полиароматическим структурам.
Механизм термодеструкции также сильно зависит от химической структуры полимера, в частности, от его термодинамической устойчивости. Для полимеров с достаточно низкими верхними предельными температурами (полиметилметакрилат, поли-α-метилстирол, полиформальдегид) (Тпр < 100 – 150 ◦С) при повышенных температурах полимер становится термодинамически неустойчивым, и термический распад полимера может проходить по цепному механизму деполимеризации (см. разделы 5 и 6). В отсутствие процессов передачи цепи практически единственным продуктом деструкции является мономер:
Pn∙ → nM
Для стабилизации термодинамически неустойчивых полимеров в условиях эксплуатации:
1) ингибируют стадию инициирования цепной реакции деполимеризации;
2) обрывают развитие цепи деполимеризации путем введения на стадии синтеза в макромолекулы термодинамически неустойчивого полимера звеньев более термодинамически устойчивого полимера.
В случае полиформальдегида первую задачу решают путем ацетилирования концевых ОН-групп полимера:
Вторую задачу решают путем сополимеризации формальдегида, например, с диоксоланом. Полученный полимер, имеющий структуру
подвергают контролируемой деструкции, в результате которой «отгорают» термодинамически неустойчивые хвосты, но реакция деполимеризации останавливается на звеньях
.
И в том и другом случае получают кинетически устойчивый, стабильный в условиях эксплуатации полимерный материал.
В случае полимеров с высокими Тпр и высокой вероятностью реакций передачи цепи выход мономера при термическом распаде практически равен 0, а продуктом термического распада является смесь олигомеров. Например, в случае полиэтилена механизм деструкции определяется протеканием реакции внутримолекулярной передачи цепи и β-распада:
β-распад
Особым объектом для области деструкции и стабилизации полимеров является один из самых крупнотоннажных полимеров – поливинилхлорид (ПВХ), поскольку он оказался одним из наименее термически стойких полимеров (Тразл ≈ 150 ◦С). Основной химической реакцией деструкции ПВХ является отщепление HCl. Скорость этой реакции существенно возрастает при наличии сопряжения C–Cl – связи с одной или несколькими сопряженными связями С=С:
k2 >> k1 и т. д.
Кроме того, реакция дегидрохлорирования катализируется выделяющимся HCl, т. е. носит автокаталитический характер. Поэтому принципы стабилизации ПВХ, с одной стороны, основаны на синтезе полимеров с минимальным содержанием подвижных атомов Cl (минимальными структурными дефектами), а с другой стороны, с обязательным введением в полимер стабилизаторов (например, оловоорганических соединений), ингибирующих реакцию дегидрохлорирования и связывающих выделяющийся HCl.
Термоокислительная деструкция.
Из всех видов деструкции под действием разнообразных химических реагентов наиболее важной является деструкция под действием кислорода, в контакте с которым находятся в процессе эксплуатации практически все полимеры.
Термоокислительная деструкция (в пределе горение) – это цепная реакция с вырожденным разветвлением цепи.
Полимеры с ненасыщенными связями в молекулах (например, натуральный каучук и полидиены) легко реагируют с кислородом, а в особенности с его активированными формами (озоном – О3, синглетным кислородом). Эта реакция ускоряется под действием излучений (УФ, γ) и приводит к образованию различных пероксидов и озонидов:
Последние легко разлагаются с разрывом макромолекул и образованием различных кислородосодержащих продуктов.
Насыщенные полиуглеводородные полимеры (полипропилен), хотя и более устойчивы к действию кислорода, также подвержены термоокислительной деструкции. Схему реакции можно представить как вырожденно-разветвленную цепную реакцию следующим образом,:
Инициирование
ин
ин
ин
Роль инициаторов часто играют структурные дефекты или примеси в полимере.
Продолжение цепи
и т. д.
Здесь
полимер обозначен как
,
а отрывается, как правило, наиболее
подвижный атом водорода (например, в
полипропилене
Обрыв цепи
Разветвление цепи
(Еа
≈ 35 – 40 ккал/моль)
Вклады этих реакций зависят от температуры, концентрации ROOH и наличии примесей (Fe2+, Mn2+).
Стабилизация полимеров основана на введении в них различных добавок (стабилизаторов), ингибирующих либо реакцию инициирования, либо реакции продолжения цепи.
Ингибирование инициирования фото- и фотоокислительной деструкцией осуществляют введением фотостабилизаторов (фотопротекторов), поглощающих кванты света без образования свободных радикалов. Схему действия фотопротекторов (Z) можно представить следующим образом:
Поглощение кванта света приводит к появлению возбужденных высокореакционных состояний вещества. Фотопротектор либо сам поглощает, а затем сам рассеивает энергию излучения, либо на него переносится энергия с фотовозбужденных групп молекул полимера. В качестве фотопротекторов используется сажа, некоторые ароматические соединения, например, оксибензофеноны и т. д.
Ингибирование реакции продолжения цепи осуществляют путем нейтрализации «агрессивного» радикала ROO∙ путем введения соединений с подвижными атомами водорода:
Образующийся радикал Х∙ малоактивен и превращается в неактивные продукты. В качестве Х–Н применяют ароматические фенолы, нафтолы, амины, аминофенолы и т. д. В качестве примера эффективного стабилизатора, в котором «запрограммирована» гибель Х∙ радикала, рассмотрим следующую систему:
Значительный стабилизирующий эффект наблюдается при использовании смеси стабилизаторов различной химической природы (синергизм действия). Например, при использовании смеси ароматического амина (-неозона-Д)
и 2,6-дитретбутилфенола
происходят следующие реакции:
Причем k1 ~ 105 л/м∙сек, k2 ~ 104 л/м∙сек, т. е. k1 > k2, и преобладает реакция (1). Однако, в присутствии фенола происходит быстрая реакция:
Тем самым, радикалы ROO∙ и Am∙ быстро превращаются в более «безопасный» радикал PhO∙.
В большинстве случаев основной задачей является максимальная стабилизация полимера. Однако, существуют и технологические задачи, целью которых является быстрая и эффективная деградация полимеров. Речь идет о так называемых «резистах» - полимерных материалах, являющихся одним из важнейших компонентов технологии создания интегральных микроэлектронных чипов. Схематически процесс выглядит следующим образом. На монокристалле кремния необходимо создать микронного масштаба контур интегральной схемы соответствующего чипа. Для этой цели на монокристалл наносится тонкая пленка резиста, на которую затем наносится путем облучения (УФ-свет через маску, электронный луч, синхротронное излучение) – соответствующий рисунок. В облученных местах полимер либо деградирует (с последующим удалением) – позитивный резист, либо сшивается, тогда при последующих обработках удаляется необлученный полимер – негативный резист.
hν
hν
полимер
Si
подложка
позитивный
резист
негативный
резист
Примерами позитивных резистов могут служить полиметилметакрилат и полисульфоны, деполимеризующиеся под действием излучения. Примерами негативных резистов могут служить олигомеры с ненасыщенными связями, сшивающиеся при облучении.
