- •Раздел №1. Введение. Основные понятия.
- •Примеры изменения свойств и применения веществ в зависимости от числа атомов с в цепи
- •Вопросы для самостоятельной проработки:
- •Раздел №2. Номенклатура и классификация полимеров
- •2.1. Номенклатура полимеров
- •2.1.1. Номенклатура, основанная на названии мономеров
- •2.1.2. Номенклатура, основанная на химической структуре полимерной цепи (систематическая номенклатура iupac)
- •Названия основных полимеров
- •2.1.3. Случайная номенклатура (в т.Ч. Торговые марки полимеров)
- •Торговые марки полипропилена
- •Основные зарубежные аналоги отечественного полипропилена
- •2.2. Классификация полимеров
- •2.2.1. По происхождению
- •2.2.2. По областям применения
- •2.2.3. По топологии (геометрии скелета макромолекул)
- •Типы геометрии скелета макромолекул
- •2.2.4. По наличию в макромолекуле одного или нескольких типов мономерных звеньев
- •Виды сополимеров
- •2.2.5. Химическая классификация
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения*
- •Раздел №3. Основные характеристики макромолекул
- •3.1. Молекулярная масса (мм), молекулярно-массовое распределение (ммр)
- •3.1.1. Способы усреднения молекулярных масс
- •3.1.2. Молекулярно- массовое распределение (ммр)
- •3.2. Конфигурация макромолекулы
- •Локальная изомерия (изомерия положения).
- •Оптическая изомерия (стереоизомерия)
- •3.3. Конформация макромолекул
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №4. Элементы, способные к образованию полимеров
- •4.1. Кислород, сера, селен
- •4.2. Азот, бор, алюминий
- •4.3. Углерод
- •4.4. Кремний
- •4.5. Фосфор
- •4.6. Виды полимеров
- •4.7. Реакции синтеза макромолекул
- •Вопросы для самостоятельной проработки:
- •Раздел №5. Термодинамические условия проведения полимеризации.
- •Вопросы для самостоятельной проработки:
- •Раздел №6. Термодинамические условия проведения реакций синтеза макромолекул (продолжение предыдущей лекции)
- •6.1. Термодинамика поликонденсации
- •Химия образования макромолекул
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №7. Радикальная полимеризация
- •7.1. Мономеры, способные вступать в реакции радикальной полимеризации
- •7.2. Инициирование (образование свободных радикалов)
- •7.3. Скорость инициирования. Факторы, влияющие на скорость инициирования
- •7.4. Влияние температуры на ход процесса. Эффект клетки.
- •7.5. Окислительно-восстановительные реакции инициирования
- •7.6. Инициирование под действием различных излучений
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №8. Радикальная полимеризация
- •8.1. Рост цепи
- •8.2. Обрыв цепи
- •8.3. Передача цепи
- •8.4. Кинетика реакций радикальной полимеризации
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №9. Ионная полимеризация. Катионная полимеризация.
- •9.1. Общие черты у радикальной и ионной полимеризации
- •9.2. Особенности ионной полимеризации по сравнению с радикальной полимеризацией
- •Примеры полимеризации различных ненасыщенных мономеров
- •9.3. Катионная полимеризация
- •9.3.1. Инициаторы (катализаторы) катионной полимеризации
- •Значения эффективного отношения константы роста к константе обрыва для различных кислот
- •Кислоты Льюиса
- •Ониевые соли
- •9.3.2. Реакция обрыва цепи в катионной полимеризации
- •9.3.3. Кинетика катионной полимеризации
- •9.3.4. Влияние природы среды
- •Влияние различных сред на скорость протекания полимеризации α-метилстирола под действием SnCl4•h2o
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 10. Анионная полимеризация
- •10.1. Мономеры, вступающие в процесс анионной полимеризации
- •10.2. Инициаторы анионной полимеризации
- •Слабые основания
- •Основания средней силы
- •Сильные основания
- •10.3. Реакции роста цепи
- •10.4. Реакции обрыва и передачи цепи
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Вопрос 1319 Раздел №11. Координационно-ионная полимеризация. Стереорегулирование.
- •Микроструктура полимеров изопрена, полученных в различных условиях.
- •Катализаторы Циглера-Натта
- •Строение бутадиена при использовании различных катализаторов
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Вопрос 1319
- •Раздел №12. Сополимеризация
- •12.1. Радикальная сополимеризация
- •Элементарные реакции роста цепи
- •Константы радикальной сополимеризации некоторых мономеров.
- •12.2. "Схема q - е" Алфрея – Прайса
- •12.3. Ионная сополимеризация
- •Влияние механизма реакции на состав продукта сополимеризации эквимолярной смеси стирола с метилметакрилатом
- •12.4. Способы проведения полимеризации
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 13. Поликонденсация
- •Основные особенности процессов полимеризации и поликонденсации
- •13.1. Классификация процессов пк
- •13.2. Полимеры, получаемые пк
- •Поликарбонаты
- •Полисульфоны
- •Полисилоксаны
- •13.3. Механизм и кинетические закономерности пк
- •13.4. Реакции ограничения роста цепи (степени полимеризации) в процессах пк
- •13.5. Методы проведения пк
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 14. Химические превращения и модификации полимеров
- •Методы химического превращения полимеров
- •Вопросы для самостоятельной проработки:
- •Раздел № 15. Старение и стабилизация полимеров
- •Раздел № 16. Модели и физические свойства макромолекул Гибкость макромолекулы
- •Модели макромолекул
- •Величины длины звена и числа мономерных звеньев в сегменте
- •Результаты математического эксперимента для цепей полиэтилена различной длины
- •Физико-механические свойства полимеров
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 17. Агрегатные, фазовые и физические состояния полимеров Высокоэластическое состояние
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 18. Агрегатные, фазовые, физические состояния полимеров (продолжение)
- •Особенности полимерных стекол
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 19. Кристаллическое состояние полимеров
- •Вопросы для самостоятельной проработки:
- •Раздел № 20. Вязко-текучее состояние полимеров
- •20.1. Свойства растворов полимеров
- •20.2. Методы исследования растворов полимеров
- •Вопросы для самостоятельной проработки:
- •Содержание:
Вопросы для самостоятельной проработки:
Что такое константы сополимеризации?
Вывод и анализ уравнения дифференциального состава сополимера.
Как меняется состав сополимера в зависимости от состава исходной смеси при различных значениях констант сополимеризации?
Диаграмма составов.
Влияние полярности мономеров и радикалов на процесс сополимеризации. Q-е схема.
Зависимость состава сополимера при ионной сополимеризации от различных факторов.
Перечислите основные преимущества и недостатки существующих способов проведения полимеризации.
Задачи для самостоятельного решения
3. Методы получения и структура основных типов полимеров
3.5. Радикальная сополимеризация
Вопросы 5501 – 5504, 5405 – 5408, 5309 – 5316
3.6. Ионная сополимеризация
Вопросы 6501 – 6503, 6404 – 6406, 6307 - 6311
Раздел № 13. Поликонденсация
Поликонденсация – процесс синтеза высокомолекулярных соединений, в котором рост макромолекул происходит путем химического взаимодействия концевых групп (многократно повторяющихся реакций конденсации) исходных полифункциональных молекул друг с другом, с реакционноспособными n-мерами (олигомерами), а также n-меров между собой.
Поликонденсацией получают около 30% всех производимых полимеров, а также проводят химический синтез пептидов, белков, нуклеиновых кислот.
Пример реакции - поликонденсация этиленгликоля и адипиновой кислоты:
Образовавшийся димер может реагировать по тому же механизму с молекулой адипиновой кислоты или с молекулой этиленгликоля с образованием соответствующих тримеров (т. к. димер имеет также 2 функциональные группы, и возможно присоединение по группе –COOH или по группе –OH), а также возможна реакция двух молекул димеров между собой с образованием тетрамера. Затем образовавшиеся димеры, тримеры, тетрамеры, n-меры могут реагировать между собой или с молекулами мономеров – происходит удлинение цепочки.
В процессе поликонденсации выделяются молекулы воды, и образуется сложноэфирная связь (обратный процесс – процесс гидролиза).
Получение полиуретанов
в приведенном примере нет выделения низкомолекулярного продукта, но характер формирования молекул соответствует поликонденсации; такие реакции называются реакциями полиприсоединения.
Таким образом, исходные молекулы должны быть бифункциональными, чтобы происходил процесс поликонденсации.
Характер формирования макромолекул различен в процессах поликонденсации и полимеризации.
Напомним, что процесс полимеризации протекает по схеме:
Рассмотрим основные особенности процессов полимеризации и поликонденсации (табл.13.1).
Таблица 13.1.
Основные особенности процессов полимеризации и поликонденсации
№ п/п |
Особенность процесса
|
Полимеризация (ПМ) |
Поликонденсация (ПК) |
1 |
Характер образования цепи |
Цепной. Продуктом процесса является макромолекула. |
Нарастание длины макромолекулы происходит по «ступеням» различной величины
|
2 |
Зависимость средней степени полимеризации от числа реакций, составляющих стадию образования макромолекул |
Арифметическая прогрессия: P
1 2 3 4 i i – число актов взаимодействия |
Геометрическая прогрессии: P
1 2 3 4 i Чем более глубоко проходит процесс, тем более сильно будет изменяться ММ в процессе поликонденсации |
3 |
Число реакционных центров в ходе процесса |
Постоянно |
В каждом акте число реакционных центров уменьшается на 2 (модель дубликации) |
4 |
Исчезновение мономера |
Мономер исчезает на глубоких стадиях, существует практически до конца реакции (небольшая часть мономера остается в конце). Определяющим параметром можно принять степень превращения по мономеру. |
Мономер исчезает на более ранних стадиях. Определяющим параметром принимается сте-пень превращения по функциональ-ным группам:
|
5 |
Образование полимера |
Полимер образуется практически сразу: P
t |
М олекулярная масса продукта возрастает постепенно. Возникает необходимость проводить процесс до глубоких стадий, чтобы получить полимер с большой ММ. P
10
2 0.5 0.9 1 q
|
6 |
Наличие катализатора или инициатора |
Наличие катализаторов или инициаторов обязательно |
Наличие катализаторов или инициаторов необязательно |
Степень полимеризации в процессе поликонденсации определяется как отношение общего числа исходных молекул мономера к числу молекул, имеющихся в момент времени t:
(13.1)
Т. к. N0=2M0, a Nt=2Mt, (13.2)
то получаем:
(13.3)
Учитывая,
что
(13.4)
получаем следующее выражение:
(13.5)
- уравнение Карозерса, оно устанавливает связь между степенью полимеризации и степенью превращения.

n
n
n
n