- •Раздел №1. Введение. Основные понятия.
- •Примеры изменения свойств и применения веществ в зависимости от числа атомов с в цепи
- •Вопросы для самостоятельной проработки:
- •Раздел №2. Номенклатура и классификация полимеров
- •2.1. Номенклатура полимеров
- •2.1.1. Номенклатура, основанная на названии мономеров
- •2.1.2. Номенклатура, основанная на химической структуре полимерной цепи (систематическая номенклатура iupac)
- •Названия основных полимеров
- •2.1.3. Случайная номенклатура (в т.Ч. Торговые марки полимеров)
- •Торговые марки полипропилена
- •Основные зарубежные аналоги отечественного полипропилена
- •2.2. Классификация полимеров
- •2.2.1. По происхождению
- •2.2.2. По областям применения
- •2.2.3. По топологии (геометрии скелета макромолекул)
- •Типы геометрии скелета макромолекул
- •2.2.4. По наличию в макромолекуле одного или нескольких типов мономерных звеньев
- •Виды сополимеров
- •2.2.5. Химическая классификация
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения*
- •Раздел №3. Основные характеристики макромолекул
- •3.1. Молекулярная масса (мм), молекулярно-массовое распределение (ммр)
- •3.1.1. Способы усреднения молекулярных масс
- •3.1.2. Молекулярно- массовое распределение (ммр)
- •3.2. Конфигурация макромолекулы
- •Локальная изомерия (изомерия положения).
- •Оптическая изомерия (стереоизомерия)
- •3.3. Конформация макромолекул
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №4. Элементы, способные к образованию полимеров
- •4.1. Кислород, сера, селен
- •4.2. Азот, бор, алюминий
- •4.3. Углерод
- •4.4. Кремний
- •4.5. Фосфор
- •4.6. Виды полимеров
- •4.7. Реакции синтеза макромолекул
- •Вопросы для самостоятельной проработки:
- •Раздел №5. Термодинамические условия проведения полимеризации.
- •Вопросы для самостоятельной проработки:
- •Раздел №6. Термодинамические условия проведения реакций синтеза макромолекул (продолжение предыдущей лекции)
- •6.1. Термодинамика поликонденсации
- •Химия образования макромолекул
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №7. Радикальная полимеризация
- •7.1. Мономеры, способные вступать в реакции радикальной полимеризации
- •7.2. Инициирование (образование свободных радикалов)
- •7.3. Скорость инициирования. Факторы, влияющие на скорость инициирования
- •7.4. Влияние температуры на ход процесса. Эффект клетки.
- •7.5. Окислительно-восстановительные реакции инициирования
- •7.6. Инициирование под действием различных излучений
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №8. Радикальная полимеризация
- •8.1. Рост цепи
- •8.2. Обрыв цепи
- •8.3. Передача цепи
- •8.4. Кинетика реакций радикальной полимеризации
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №9. Ионная полимеризация. Катионная полимеризация.
- •9.1. Общие черты у радикальной и ионной полимеризации
- •9.2. Особенности ионной полимеризации по сравнению с радикальной полимеризацией
- •Примеры полимеризации различных ненасыщенных мономеров
- •9.3. Катионная полимеризация
- •9.3.1. Инициаторы (катализаторы) катионной полимеризации
- •Значения эффективного отношения константы роста к константе обрыва для различных кислот
- •Кислоты Льюиса
- •Ониевые соли
- •9.3.2. Реакция обрыва цепи в катионной полимеризации
- •9.3.3. Кинетика катионной полимеризации
- •9.3.4. Влияние природы среды
- •Влияние различных сред на скорость протекания полимеризации α-метилстирола под действием SnCl4•h2o
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 10. Анионная полимеризация
- •10.1. Мономеры, вступающие в процесс анионной полимеризации
- •10.2. Инициаторы анионной полимеризации
- •Слабые основания
- •Основания средней силы
- •Сильные основания
- •10.3. Реакции роста цепи
- •10.4. Реакции обрыва и передачи цепи
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Вопрос 1319 Раздел №11. Координационно-ионная полимеризация. Стереорегулирование.
- •Микроструктура полимеров изопрена, полученных в различных условиях.
- •Катализаторы Циглера-Натта
- •Строение бутадиена при использовании различных катализаторов
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Вопрос 1319
- •Раздел №12. Сополимеризация
- •12.1. Радикальная сополимеризация
- •Элементарные реакции роста цепи
- •Константы радикальной сополимеризации некоторых мономеров.
- •12.2. "Схема q - е" Алфрея – Прайса
- •12.3. Ионная сополимеризация
- •Влияние механизма реакции на состав продукта сополимеризации эквимолярной смеси стирола с метилметакрилатом
- •12.4. Способы проведения полимеризации
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 13. Поликонденсация
- •Основные особенности процессов полимеризации и поликонденсации
- •13.1. Классификация процессов пк
- •13.2. Полимеры, получаемые пк
- •Поликарбонаты
- •Полисульфоны
- •Полисилоксаны
- •13.3. Механизм и кинетические закономерности пк
- •13.4. Реакции ограничения роста цепи (степени полимеризации) в процессах пк
- •13.5. Методы проведения пк
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 14. Химические превращения и модификации полимеров
- •Методы химического превращения полимеров
- •Вопросы для самостоятельной проработки:
- •Раздел № 15. Старение и стабилизация полимеров
- •Раздел № 16. Модели и физические свойства макромолекул Гибкость макромолекулы
- •Модели макромолекул
- •Величины длины звена и числа мономерных звеньев в сегменте
- •Результаты математического эксперимента для цепей полиэтилена различной длины
- •Физико-механические свойства полимеров
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 17. Агрегатные, фазовые и физические состояния полимеров Высокоэластическое состояние
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 18. Агрегатные, фазовые, физические состояния полимеров (продолжение)
- •Особенности полимерных стекол
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 19. Кристаллическое состояние полимеров
- •Вопросы для самостоятельной проработки:
- •Раздел № 20. Вязко-текучее состояние полимеров
- •20.1. Свойства растворов полимеров
- •20.2. Методы исследования растворов полимеров
- •Вопросы для самостоятельной проработки:
- •Содержание:
Микроструктура полимеров изопрена, полученных в различных условиях.
Приведенные данные показывают, что стереоспецифический эффект наблюдается только при полимеризации изопрена в углеводородной среде на литиевом катализаторе. Этот эффект связан с относительно высокой склонностью иона лития к образованию координационных связей, что отличает его от ионов Na, K и Rb.
Переходный комплекс в реакции роста может быть представлен следующей схемой:
При проведении реакции в растворителях, способных образовывать более прочные комплексы с литием, чем мономер, предварительная координация присоединяющегося мономера оказывается невозможной и стереоспецифический эффект пропадает. Природа растворителя оказывает существенное влияние на структуру получаемых полимеров и в случае других координационно-ионных процессов.
Если проводим анионную полимеризацию в полярном растворителе (например, тетрагидрофуране) с помощью алкилов лития или натрия, то получим атактические структуры в основном с 1,2-присоединением. Проведение этой же полимеризации в неполярном растворителе приводит к образованию полибутадиена с 1,4-присоединением. При полимеризации изопрена в тех же условиях получаются 1,4-цис-полиизопрен. Возможность стереорегулирования объясняется тем, что во втором случае существует ионный ассоциат, не сольватированный неполярным растворителем, димеры или более сложные n-меры (тетрамеры, гексамеры, и т. д.):
Для выяснения деталей механизма стереорегулирования в качестве мономера был выбран эфир сорбиновой кислоты.
Для введения хиральности используют асимметрические лиганды (R*Li). Асимметрический лиганд R* инициатора не должен влиять на процесс присоединения следующих мономеров по мере роста цепи:
Однако, в результате полимеризации образуется не только стереорегулярные 1,4-цис полимеры, но и оптически активные полимеры. Это указывает на наличие хиральной индукции от противоиона R*Li. Последнее можно объяснять влиянием противоиона в ионном ассоциате на стереохимию присоединения молекул мономера к концу растущей цепи. Активный R*Li индуцирует присоединяющиеся к растущей цепи мономеры определенным образом и создает оптическую активность у получаемого полимера.
Так, варьируя природу алкильной группы в R*Li можно получать 1,4-изотактические структуры, рацемат или один из оптических изомеров.
Методом полимеризации можно также осуществлять разделение рацематов, т. к. при наличии оптически активного сокатализатора в реакцию вступает лишь один из мономеров.
(например,
,
R или S
стереоизомер).
Катализаторы Циглера-Натта
Для стереорегулирования наиболее эффективными оказались катализаторы, названные катализаторами Циглера-Натта (по именам открывших и исследовавших их ученых).
Эти катализаторы представляют собой смеси ряда металлоорганических соединений (алюминийсодержащих, магнийсодержащих, цинксодержащих и некоторых других) с хлоридами некоторых переходных элементов (используются соединения d-элементов).
Наиболее
известной системой является AlR3·TiCl3,
где на поверхности кристалла TiCl3
образуется его комплекс (соединение) с
AlR3, который является
активным центром полимеризации. В случае
пропилена (наиболее практически важный
случай) можно получить изотактический
полипропилен. Механизм процесса можно
представить схемой:
Пропилен полимеризуется с высокими скоростями с образованием изотактического полипропилена. По такому же механизму образуется линейный высокомолекулярный полиэтилен низкого давления.
Было обнаружено, что катализаторы Циглера-Натта позволяют получать целый ряд стереорегулярных полимеров. Один и тот же мономер в присутствии разных катализаторов полимеризуется с образованием различных продуктов. Например, при использовании разных катализаторов при полимеризации бутадиена можно наблюдать следующую картину:
Таблица 11.2
