Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
pph.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
11.65 Mб
Скачать

10.3. Реакции роста цепи

Реакция роста цепи может протекать с участием всех форм существования активных центров (ассоциаты металлорганических соединений (МОС) ↔ мономерная форма МОС ↔ контактные ионные пары ↔ сольватно-разделенные ионные пары ↔ свободные ионы). Отсутствие гибели активных центров позволяет определить вклад каждой из форм активного центра в суммарную скорость роста цепи. Так при полимеризации стирола константа скорости роста с участием свободного иона составляет примерно 104-105 л•моль/с (для сравнения константа скорости на ионных парах и в радикальной полимеризации составляет примерно 102 л•моль/с, т.е. свободный ион значительно активнее, чем ионная пара или свободный радикал). Поэтому даже при низких концентрациях свободных ионов их вклад в реакцию роста может быть значительным.

10.4. Реакции обрыва и передачи цепи

Противоионами в анионной полимеризации являются химически стабильные катионы металлов. Поэтому характерные реакции обрыва и передачи цепи связаны с реакциями анионов роста цепи с какими-либо соединениями (растворителями, примесями, функциональными группами в мономере, например, , , и т. д.).

Образующиеся анионы гораздо менее активны по сравнению с карбанионами, полимеризация останавливается. Также эти процессы можно использовать для введения в макромолекулы определенных концевых групп.

В некоторых случаях, например, при полимеризации акриламида может происходить изомеризация мономера (благодаря подвижному атому водорода при атоме азота):

Вопросы для самостоятельной проработки:

  1. Приведите примеры мономеров, которые полимеризуются по анионному механизму.

  2. Какие инициаторы применяются в анионной полимеризации?

  3. Как определяется степень полимеризации при анионном механизме полимеризации по механизму «живых» цепей?

  4. Охарактеризуйте реакцию роста цепи при анионной полимеризации

  5. Каким образом протекают реакции обрыва и передачи цепи при анионной полимеризации?

Задачи для самостоятельного решения

3. Методы получения и структура основных типов полимеров

3.1. Виды полимеризации. Инициирование и ингибирование полимеризации

Вопрос 1319 Раздел №11. Координационно-ионная полимеризация. Стереорегулирование.

Существует ряд элементоорганических соединений, которые трудно однозначно классифицировать как возбудителей катионной или анионной полимеризации. К таким соединениям относят вещества, являющиеся производными переходных металлов, в том числе и тех, которые относят к кислотам Льюиса.

В качестве примера можно привести такие соединения, как тригалогениды алюминия (трихлорид, трибромид алюминия), триалкилалюминиевые соединения, алкилированные или галогенпроизводные титана, цинка и некоторых других элементов. При последовательном замещении галоида на алкильную группу мы переходим от классических катионных к анионным возбудителям.

Все указанные соединения в принципе могут инициировать полимеризацию:

Еще более сложной оказывается картина в случае соединений тяжелых переходных металлов.

На самом деле полимеризация проходит в 2 этапа:

  • На первой стадии протекает координация мономера с противоионом, когда и происходит активация мономера

  • Затем происходит присоединение мономера:

Таким образом, катионные и анионные процессы как бы объединяются в координационно-ионном процессе. Некоторые мономеры в присутствии координационно-ионных катализаторов способны вступать в реакции полимеризации, тогда как в процессах обычной катионной или анионной полимеризации они не полимеризуются. В этих случаях часто реализуется стереорегулирование в процессе полимеризации.

Стереорегулированием называется процесс направленного синтеза полимеров определенного пространственного строения.

Рассмотрим возможные продукты полимеризации 2-метил-1,4-бутадиена (изопрена).

При полимеризации изопрена (и бутадиена) возможно образование ряда структур:

  • т.к. присоединение молекул мономера может происходить при раскрытии двойной связи между атомами углерода 1 и 2, при раскрытии между атомами 3 и 4 или же при раскрытии обеих двойных связей с образованием одной новой двойной связи между атомами 2 и 3 молекулы, то могут образовываться продукты 1,2-, 3,4- и 1,4-присоединения соответственно;

  • в зависимости от типа соединения ("голова-хвост-голова-хвост" или "голова-голова-хвост-хвост") будет образовываться ряд различных продуктов реакции из одного и того же мономера;

  • если присоединение проходит по типу 1,4-раскрытия связей, то будет иметь место еще и "цис-транс» - изомерия;

  • в соответствии с возможными различными расположениями заместителей возможно образование изо-, синдио- и атактических структур.

Таким образом, возникает проблема направленного синтеза структур с определенным пространственным строением.

Синтез полимера с определенным стереостроением является отдельной задачей для каждого полимера. Т. е. для каждого вида синтезируемого полимера из данного мономера (или нескольких сомономеров) можно лишь примерно наметить пути его возможных синтезов. Часто методы синтезов полимера с тем или иным стереостроением определяются эмпирически. Для хорошо изученных полимеров ряд методов уже разработан. На основании базы разработанных методов синтезов различных полимеров и теоретических соображений можно выделить лишь общие рекомендации, которые могут пригодиться при синтезе нового полимера.

Приведем примеры, иллюстрирующие влияние различных факторов при получении конкретных полимеров.

Так, использование эффектов комплексообразования с противоионами позволяет получать регулярные структуры из-за образования определенного пространственного расположения мономеров вокруг противоиона:

Влияние комплексообразующей способности противоиона на стереоспецифичность реакции роста можно проиллюстрировать данными по микроструктуре полимеров изопрена, полученными при полимеризации в присутствии ряда щелочных металлов.

Таблица 11.1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]