- •Раздел №1. Введение. Основные понятия.
- •Примеры изменения свойств и применения веществ в зависимости от числа атомов с в цепи
- •Вопросы для самостоятельной проработки:
- •Раздел №2. Номенклатура и классификация полимеров
- •2.1. Номенклатура полимеров
- •2.1.1. Номенклатура, основанная на названии мономеров
- •2.1.2. Номенклатура, основанная на химической структуре полимерной цепи (систематическая номенклатура iupac)
- •Названия основных полимеров
- •2.1.3. Случайная номенклатура (в т.Ч. Торговые марки полимеров)
- •Торговые марки полипропилена
- •Основные зарубежные аналоги отечественного полипропилена
- •2.2. Классификация полимеров
- •2.2.1. По происхождению
- •2.2.2. По областям применения
- •2.2.3. По топологии (геометрии скелета макромолекул)
- •Типы геометрии скелета макромолекул
- •2.2.4. По наличию в макромолекуле одного или нескольких типов мономерных звеньев
- •Виды сополимеров
- •2.2.5. Химическая классификация
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения*
- •Раздел №3. Основные характеристики макромолекул
- •3.1. Молекулярная масса (мм), молекулярно-массовое распределение (ммр)
- •3.1.1. Способы усреднения молекулярных масс
- •3.1.2. Молекулярно- массовое распределение (ммр)
- •3.2. Конфигурация макромолекулы
- •Локальная изомерия (изомерия положения).
- •Оптическая изомерия (стереоизомерия)
- •3.3. Конформация макромолекул
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №4. Элементы, способные к образованию полимеров
- •4.1. Кислород, сера, селен
- •4.2. Азот, бор, алюминий
- •4.3. Углерод
- •4.4. Кремний
- •4.5. Фосфор
- •4.6. Виды полимеров
- •4.7. Реакции синтеза макромолекул
- •Вопросы для самостоятельной проработки:
- •Раздел №5. Термодинамические условия проведения полимеризации.
- •Вопросы для самостоятельной проработки:
- •Раздел №6. Термодинамические условия проведения реакций синтеза макромолекул (продолжение предыдущей лекции)
- •6.1. Термодинамика поликонденсации
- •Химия образования макромолекул
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №7. Радикальная полимеризация
- •7.1. Мономеры, способные вступать в реакции радикальной полимеризации
- •7.2. Инициирование (образование свободных радикалов)
- •7.3. Скорость инициирования. Факторы, влияющие на скорость инициирования
- •7.4. Влияние температуры на ход процесса. Эффект клетки.
- •7.5. Окислительно-восстановительные реакции инициирования
- •7.6. Инициирование под действием различных излучений
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №8. Радикальная полимеризация
- •8.1. Рост цепи
- •8.2. Обрыв цепи
- •8.3. Передача цепи
- •8.4. Кинетика реакций радикальной полимеризации
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел №9. Ионная полимеризация. Катионная полимеризация.
- •9.1. Общие черты у радикальной и ионной полимеризации
- •9.2. Особенности ионной полимеризации по сравнению с радикальной полимеризацией
- •Примеры полимеризации различных ненасыщенных мономеров
- •9.3. Катионная полимеризация
- •9.3.1. Инициаторы (катализаторы) катионной полимеризации
- •Значения эффективного отношения константы роста к константе обрыва для различных кислот
- •Кислоты Льюиса
- •Ониевые соли
- •9.3.2. Реакция обрыва цепи в катионной полимеризации
- •9.3.3. Кинетика катионной полимеризации
- •9.3.4. Влияние природы среды
- •Влияние различных сред на скорость протекания полимеризации α-метилстирола под действием SnCl4•h2o
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 10. Анионная полимеризация
- •10.1. Мономеры, вступающие в процесс анионной полимеризации
- •10.2. Инициаторы анионной полимеризации
- •Слабые основания
- •Основания средней силы
- •Сильные основания
- •10.3. Реакции роста цепи
- •10.4. Реакции обрыва и передачи цепи
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Вопрос 1319 Раздел №11. Координационно-ионная полимеризация. Стереорегулирование.
- •Микроструктура полимеров изопрена, полученных в различных условиях.
- •Катализаторы Циглера-Натта
- •Строение бутадиена при использовании различных катализаторов
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Вопрос 1319
- •Раздел №12. Сополимеризация
- •12.1. Радикальная сополимеризация
- •Элементарные реакции роста цепи
- •Константы радикальной сополимеризации некоторых мономеров.
- •12.2. "Схема q - е" Алфрея – Прайса
- •12.3. Ионная сополимеризация
- •Влияние механизма реакции на состав продукта сополимеризации эквимолярной смеси стирола с метилметакрилатом
- •12.4. Способы проведения полимеризации
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 13. Поликонденсация
- •Основные особенности процессов полимеризации и поликонденсации
- •13.1. Классификация процессов пк
- •13.2. Полимеры, получаемые пк
- •Поликарбонаты
- •Полисульфоны
- •Полисилоксаны
- •13.3. Механизм и кинетические закономерности пк
- •13.4. Реакции ограничения роста цепи (степени полимеризации) в процессах пк
- •13.5. Методы проведения пк
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 14. Химические превращения и модификации полимеров
- •Методы химического превращения полимеров
- •Вопросы для самостоятельной проработки:
- •Раздел № 15. Старение и стабилизация полимеров
- •Раздел № 16. Модели и физические свойства макромолекул Гибкость макромолекулы
- •Модели макромолекул
- •Величины длины звена и числа мономерных звеньев в сегменте
- •Результаты математического эксперимента для цепей полиэтилена различной длины
- •Физико-механические свойства полимеров
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 17. Агрегатные, фазовые и физические состояния полимеров Высокоэластическое состояние
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 18. Агрегатные, фазовые, физические состояния полимеров (продолжение)
- •Особенности полимерных стекол
- •Вопросы для самостоятельной проработки:
- •Задачи для самостоятельного решения
- •Раздел № 19. Кристаллическое состояние полимеров
- •Вопросы для самостоятельной проработки:
- •Раздел № 20. Вязко-текучее состояние полимеров
- •20.1. Свойства растворов полимеров
- •20.2. Методы исследования растворов полимеров
- •Вопросы для самостоятельной проработки:
- •Содержание:
9.3. Катионная полимеризация
В процессе катионной полимеризации инициатором процесса являются катионы. Поэтому в процесс вступают мономеры с кратной связью С=С, имеющие избыточную электронную плотность на двойной связи,
Образующийся катион стабилизируется электронодонорным действием заместителя и сопряжением с ним. Поэтому активными мономерами в катионной полимеризации будут:
изобутилен
стирол
α-метилстирол
виниловые эфиры
Не
полимеризуются мономеры с
электроно-акцепторными заместителями
,
,
или в тех случаях, когда атака катиона
направляется не на двойную связь, а на
другую группу, например
В
процесс катионной полимеризации также
вступают соединения с кратными связями
,
,
.
Образующийся катион стабилизируется вследствие наличной резонансной структуры «ониевого»
типа
Не
полимеризуются
,
В катионную полимеризацию вступают большое количество циклических мономеров.
окиси циклически ацетали лактоны лактамы имины циклические амины
циклические эфиры
Могут существовать различные варианты атаки катиона на молекулу мономера:
Чтобы определить место атаки катиона, необходимо сравнить стабильность образующихся продуктов. Это поможет определить строение получающегося полимера.
В
случае лактона местом атаки является
атом
.
После раскрытия цикла образуется стабильный катион, способный атаковать следующие молекулы мономера с раскрытием цикла.
В случае циклических ацеталей:
Стабилизация катиона, получаемого после раскрытия цикла, согласно вышеприведенной схеме, осуществляется благодаря тому, что его можно рассматривать как оксониевый ион.
В случае циклических эфиров и окисей олефинов, тиоэфиров и циклических иминов:
Стабилизированной формой является ониевый (оксониевый) или аммониевый катион. Рост цепи осуществляется при его атаке следующей молекулой мономера с регенерацией ониевого катиона.
Полимеризуются по катионному механизму и полициклические мономеры.
9.3.1. Инициаторы (катализаторы) катионной полимеризации
Протонные кислоты: H2SO4, H3PO4, CF3COOH, HCl, НСlO4;
Кислоты Льюиса: BF3, AlCl3, AlBr3, SnCl4, ZnCl2; - при этом используют сокатализаторы: H2O, ROH, RCl;
Галогены и межгалогенные соединения: J2, JBr, JCl, ...
Ониевые соли: R3O+X-,
.
Рассмотрим, как будет идти процесс полимеризации при использовании различных кислот.
а) Протонные кислоты:
HBr, HFSO3, H2SO4, HClO4
Сила кислот в приведенном ряду возрастает от бромоводородной к хлорной кислоте.
Критерием, по которому сравнивают влияние различных кислот на ход процесса, является эффективное отношение константы роста к константе обрыва:
Таблица 9.3.1.1.
Значения эффективного отношения константы роста к константе обрыва для различных кислот
Кислота |
HBr |
HFSO3 |
H2SO4 |
HClO4 |
(Кр/Ко)эф |
30 |
500 |
800 |
20000 |
С увеличением силы кислоты или с уменьшением нуклеофильности аниона вероятность обрыва цепи значительно снижается.
Роль среды в катионной полимеризации можно проиллюстрировать следующим примером. При взаимодействии трифторуксусной кислоты со стиролом процесс может протекать по двум направлениям.
При введении CF3COOH в жидкий стирол (малополярное вещество – направление 1) , противоион сразу же присоединяется к карбкатиону, образуя сложноэфирный аддукт. При медленном введении стирола в жидкую CF3COOH (высокополярное вещество – направление 2), ионная пара сольватирована и карбкатион «успевает» присоединить n молекул стирола с образованием полимера.
Реакция протекает по направлению 1, когда взаимодействие между катионом и анионом сильное.
