
- •Глава 2. Кинематика
- •Глава 3.Динамика
- •Часть II. Сопротивление материалов Задача 1.Расчет бруса при центральном растяжении (сжатии)
- •Часть III. Детали механизмов и машин
- •2. Общие указания по выполнению контрольных работ
- •2.1. Содержание заданий, выбор вариантов
- •2.2. Требования к выполнению и оформлению контрольных работ
- •2.3. Защита контрольной работы
- •Часть I. Теоретическая механика
- •Глава 1.1. Статика
- •Задача 1. Равновесие твердого тела под действием произвольной плоской системы сил
- •1.1.1. Содержание задания
- •1.1.2. Краткие сведения по теории и методические рекомендации по решению задач
- •1.1.3. Пример решения задачи
- •1.1.4. Вопросы для самоконтроля (защиты задачи)
- •Задача 2. Равновесие твердого тела под действием произвольной пространственной системы сил
- •1.2.1. Содержание задания
- •1.2.2. Краткие сведения по теории и методические рекомендации по решению задач
- •1.2.3. Пример решения задачи
- •1.2.4. Вопросы для самоконтроля (защиты задачи)
- •Глава 2. Кинематика
- •Задача 3. Определение кинематических характеристик поступательного и вращательного движений твердого тела
- •1.3.1. Содержание задания
- •1.3.2. Краткие сведения по теории и методические рекомендации по решению задач
- •1.3.3. Пример решения задачи
- •1.3.4. Вопросы для самоконтроля (защиты задачи)
- •Задача 4. Определение кинематических характеристик плоского механизма
- •1.4.1. Содержание задания
- •1.4.2. Краткие сведения по теории и методические рекомендации по решению задач
- •1.4.3. Пример решения задачи
- •1.4.4. Вопросы для самоконтроля (защиты задачи)
- •Глава 3.Динамика Задача 5. Динамика материальной точки
- •1.5.1. Содержание задания
- •1.5.2. Краткие сведения по теории и методические рекомендации по решению задач
- •1.5.3. Пример решения задачи
- •1.5.4 Вопросы для самоконтроля (защиты контрольной работы)
- •Задача 6. Применение теоремы об изменении кинетической энергии к изучению движения механической системы
- •1.6.1. Содержание задания
- •1.6.2. Краткие сведения по теории и методические рекомендации по решению задач
- •Формулы для подсчёта кинетической энергии твёрдого тела в различных видах его движения.
- •Работа сил, приложенных к твердому телу.
- •1.6.3. Пример решения задачи
- •1.6.4. Вопросы для самоконтроля (защиты контрольной работы)
- •1.7.1. Содержание задания
- •1.7.2. Краткие сведения по теории и методические рекомендации по решению задач
- •1.7.3. Пример решения задачи
- •1.7.4. Вопросы для самоконтроля (защиты контрольной работы)
- •Часть II. Сопротивление материалов
- •Задача 1. Расчет бруса при центральном растяжении (сжатии)
- •2.1.1. Содержание задания
- •2.1.2. Краткие сведения по теории и методические рекомендации по решению задач
- •2.1.3. Пример решения задачи
- •2.1.4. Вопросы для самоконтроля (защиты контрольной работы)
- •Задача 2.Расчет вала на прочность и жесткость при кручении
- •2.2.1. Содержание задания
- •2.2.2. Краткие сведения по теории и методические рекомендации по решению задач
- •2.2.4. Вопросы для самоконтроля (защиты контрольной работы)
- •Задача 3. Расчет балки на прочность при изгибе
- •3.3.1. Содержание задания
- •3.3.2. Краткие сведения по теории и методические рекомендации по решению задач
- •3.3.3. Пример решения задачи
- •3.3.4. Вопросы для самоконтроля (защиты контрольной работы)
- •Часть III. Детали механизмов и машин
- •Задача 1. Расчет заклепочных соединений
- •3.1.1. Содержание задания
- •3.1.2. Краткие сведения по теории и методические рекомендации по решению задач
- •3.1.3. Пример решения задачи
- •3.1.4. Вопросы для самоконтроля (защиты контрольной работы)
- •Задача 2. Расчет резьбовых соединений
- •3.2.1. Содержание задания
- •3.2.2. Краткие сведения по теории и методические рекомендации по решению задач
- •Типовые схемы расчета болтов
- •3.2.3. Пример решения задачи
- •3.2.4. Вопросы для самоконтроля (защиты контрольной работы)
- •Задача 3. Расчет цилиндрических зубчатых передач
- •3.3.1. Содержание задания
- •3.3.2. Краткие сведения по теории и методические рекомендации по решению задач
- •3.3.3. Пример решения задачи
- •3.3.4. Вопросы для самоконтроля (защиты контрольной работы)
2.1.3. Пример решения задачи
Ступенчатый брус нагружен силами Р1, Р2, Р3, (рисунок 34.2).
Требуется построить эпюры продольных сил N, нормальных напряжений , продольных перемещений и проверить, выполняется ли условие прочности.
Дано:
кН,
кН,
кН,
м
м,
м;
.
;
.
Решение.
1. Построение эпюры N.
На брус действуют три силы, следовательно, продольная сила по его длине будет изменяться. Разбиваем брус на участки, в пределах которых продольная сила будет постоянной. В данном случае границами участков являются сечения, в которых приложены силы. Обозначим сечения буквами А, В, С, D, начиная со свободного конца, в данном случае правого.
Рисунок
34.2. Расчетная схема бруса и эпюры: а‑
расчетная схема; б‑
эпюра продольных сил; в‑ эпюра
напряжений;
г‑
эпюра продольных перемещений
Участок
АВ, сечение 1-1. Справа от сечения
действует растягивающая сила
(рисунок 34.2, а). В соответствии с
упомянутым ранее правилом, получаем
Участок ВС, сечение 2-2. Справа от него расположены две силы, направленные в разные стороны. С учетом правила знаков, получим
Участок СD, сечение 3-3: аналогично получаем
По найденным значениям N в выбранном масштабе строим эпюру, учитывая, что в пределах каждого участка продольная сила постоянна (рисунок 34.2)
Положительные значения N откладываем вверх от оси эпюры, отрицательные - вниз.
Построение эпюры напряжений .
Вычисляем напряжения в поперечном сечении для каждого участка бруса:
;
;
.
При вычислении нормальных напряжений значения продольных сил N берутся по эпюре с учетом их знаков. Знак плюс соответствует растяжению, минус - сжатию. Эпюра напряжений показана на рисунке 34.2, в.
Построение эпюры продольных перемещений.
Для построения эпюры перемещений вычисляем абсолютные удлинения отдельных участков бруса, используя закон Гука:
;
.
Определяем перемещения сечений, начиная с неподвижного закрепленного конца. Сечение D расположено в заделке, оно не может смещаться и его перемещение равно нулю:
Сечение С переместится в результате изменения длины участка CD. Перемещение сечения С определяется по формуле
.
При отрицательной (сжимающей) силе точка С сместится влево.
Перемещение сечения В является результатом изменения длин DC и CB. Складывая их удлинения, получаем
.
Рассуждая аналогично, вычисляем перемещение сечения А:
.
В выбранном масштабе откладываем от исходной оси значения вычисленных перемещений. Соединив полученные точки прямыми линиями, строим эпюру перемещений ( рисунок 34.2, г).
Проверка прочности бруса.
Условие прочности записывается в следующем виде:
.
Максимальное
напряжение
находим по эпюре напряжений, выбирая
максимальное по абсолютной величине:
.
Это напряжение действует на участке DC, все сечения которого являются опасными.
Вычисляем допускаемое напряжение:
.
Сравнивая
и
,
видим, что условие прочности не
выполняется, так как максимальное
напряжение превышает допускаемое.