
- •Содержание.
- •I.Нефть газ на карте мира
- •1.Динамика мировой нефтегазодобычи
- •2.Мировые запасы нефти и газа
- •3. Месторождения-гиганты Классификация газовых месторождении
- •Крупные газовые месторождения
- •Классификация нефтяных месторождении
- •II. История нефтяной и газовой промышленности и трубопроводного транспорта
- •4.История нефтяной промышленности России
- •5. История газовой промышленности России
- •6. История транспорта нефти и газа России
- •7. Транспорт нефти и газа на территории Удмуртской республики, Пермского края и республики Башкортостан
- •8. Нефтяная промышленность Волго-Уральского региона
- •III. Основы геологии нефти и газа
- •9. Происхождение нефти
- •10. Происхождение газа
- •11. Внутреннее строение Земли
- •12. Строение земной коры
- •13. Пласты-коллекторы. Пористость и проницаемость.
- •14. Основные элементы нефтегазовой залежи.
- •15. Месторождения нефти и газа
- •16.Условия залегания нефти, газа и воды в горных породах.
- •17. Давление в земной коре.
- •18.Температура в нефтяных пластах
- •19.Породы, содержащие нефть и газ. Природные резервуары. Ловушки.
- •20. Классификации ресурсов и запасов нефти и газа
- •21.Подсчет запасов углеводородов
- •22. Основные физико-химические свойства нефти.
- •23. Попутный (нефтяной) газ и его основные физико-химические свойства.
- •24. Природный газ и его основные физико-химические свойства.
- •25.«Сланцевый» газ.
- •26.Пластовая энергия и силы, действующие в нефтяных и газовых пластах.
- •27.Режим работы нефтяных и газовых залежей. Водонапорный режим.
- •28. Режим работы нефтяных и газовых залежей. Упруговодонапорный режим
- •29. Режим работы нефтяных и газовых залежей. Газонапорный режим.
- •30. Режим работы нефтяных и газовых залежей. Режим растворенного газа.
- •31. Режим работы нефтяных и газовых залежей. Гравитационный режим.
- •32. Приток жидкости и газа к скважинам
- •33.Поиски и разведка нефтяных и газовых месторождений
- •34.Цели и задачи исследования скважин и пластов
- •35. Методы геофизических исследований, применяемых при бурении скважин
- •36.Методы исследования, применяемые при разработке нефтяных и газовых месторождений
- •37. Исследование скважин при неустановившихся режимах.
- •38. Исследование нагнетательных скважин.
- •39. Изучение профилей притока и поглощения пластов добывающих и нагнетательных скважин.
- •40. Понятие о термодинамических методах исследования скважин.
- •41. Гидропрослушивание пластов.
- •42. Выбор оборудования и приборов для исследования.
- •IV. Бурение нефтяных и газовых скважин
- •43. Бурение нефтяных и газовых скважин. Понятие о скважине.
- •44. Бурение нефтяных и газовых скважин. Способы бурения скважин.
- •45. Цикл строительства скважин
- •46. Бурение горизонтальных скважин и боковых горизонтальных стволов.
- •47. Сверхглубокое бурение
- •V. Добыча нефти и газа
- •48. Основы подъема газожидкостной смеси из забоя скважины.
- •49. Добыча нефти и газа. Фонтанная эксплуатация скважин.
- •50. Добыча нефти и газа. Газлифтная эксплуатация скважин.
- •1) Фонтанный, когда нефть извлекается из скважин самоизливом;
- •2) Компрессорный(газлифтный) - с помощью энергии сжатого газа, вводимого
- •3) Насосный - извлечение нефти с помощью насосов различных типов.
- •51. Добыча нефти и газа. Насосная эксплуатация скважин.
- •52. Основы разработки нефтяных месторождений
- •53. Основы разработки газовых месторождений.
- •54. Стадии разработки залежи.
- •55. Призабойная зона пласта, ее проницаемость. Причины ухудшения проницаемости и методы ее увеличения.
- •56.Классификация и области применения методов увеличения проницаемости призабойной зоны пласта
- •57. Кислотные обработки призабойной зоны пласта. Цель и механизм ведения процесса.
- •58.Гидравлический разрыв пласта. Цель и механизм ведения процесса.
- •59.Щелевая разгрузка родуктивного пласта в призабойной зоне пласта. Цель и механизм ведения процесса.
- •60. Основные виды заводнения скважин
- •61. Нестационарное (циклическое) заводнение.
- •62.Воздействие на нефтяной пласт теплом. Паротепловое воздействие и воздействие горячей водой.
- •63. Холодное полимерное воздействие на залежь высоковязкой нефти в карбонатных коллекторах. Цель и механизм ведения процесса.
- •64.Циклическое внутрипластовое полимерно-термическое воздействие (цптв).
- •65.Импульсно-дозированное воздействие (идтв) на пласт.
- •66.Импульсно-дозированное тепловое воздействие с паузой (идтв(п)).
- •67. Термоциклическое воздействие на пласт (твптв).
- •68. Технология приготовления полимерного раствора для закачки в пласт.
- •69. Термополимерное воздействие на залежь высоковязкой нефти
- •VI. Основы сбора и подготовки нефти и газа на промыслах
- •70.Принципиальная технологическая схема сбора и подготовки продукции нефтяных скважин на промыслах.
- •71. Сбор и подготовка газа и газового конденсата.
- •VII. Основы транспортирования нефти и газа по магистральным трубопроводам
- •72. Принципиальная технологическая схема магистрального трубопроводного транспорта нефти.
- •73. Принципиальная технологическая схема магистрального трубопроводного транспорта газа.
- •74. Хранение и распределение газа.
- •Vш. Основные технологии переработки нефти
- •75.Основные этапы переработки нефти.
- •76. Первичная переработка нефти
- •77.Вторичная переработка нефти
- •78.Товарное производство
- •79. Современное состояние нефтепереработки в России
- •IX.Экологические мероприятия при разведке, бурении, добыче и транспортировке углеводородов.
- •80. Соблюдение экологических мер при бурении, поисках, разведке и разработке
- •81.Экологические мероприятия при транспортировке, хранении и переработке
- •82.Особенности нефтезагязнений при добыче нефти в Удмуртской Республике
- •Глоссарий
- •Водонефтяной контакт – поверхность, разделяющая нефть и воду в нефтеносном пласте. В процессе эксплуатации залежи нефти происходит перемещение внк.
- •Геолого – геофизический разрез - геологический разрез скважины, дополненный типичной каротажной диаграммой. Обычно разрез дополняют типичными кривыми электрического каротажа.
- •Давление насыщения нефти газом - давление, при котором определенный объем газа находится в растворенном состоянии в нефти.
- •Классификация скважин
40. Понятие о термодинамических методах исследования скважин.
Термодинамические исследования позволяют изучать распределение температуры в длительно простаивающей (геотерма) и в работающей (термограмма) скважине
Рис.32. Распределение температуры по стволу .
скважины.
Тг - геотерма – естественное распределение температуры в
неработающей скважине;
Тn - термограмма – распределение температуры в работающей
скважине.
Термодинамические исследования основаны на сопоставлении геотермы и термограммы действующей скважины. Геотерма снимается в простаивающей скважине и дает представление о естественном тепловом поле Земли. Термограмма фиксирует изменение температуры в стволе скважины. С помощью данных исследований можно определить интервалы поглощающих и отдающих пластов, а также использовать полученные результаты для: определения затрубной циркуляции; перетока закачиваемой воды и места нарушения колонны; определения высоты подъема цементного раствора за колоннами после их цементирования.
41. Гидропрослушивание пластов.
Гидропрослушивание пластов заключается в наблюдении за изменениями уровня или давления, происходящими в одних скважинах (реагирующих) при изменении отбора жидкости в других соседних скважинах (возмущающих). По результатам этих исследований определяют те же параметры, что и при исследовании скважин на неустановившихся режимах. Отличие заключается в том, что эти параметры характеризуют область пласта в пределах исследуемых скважин.
Для измерения давления на забое скважин используют абсолютные и дифференциальные (регистрируют приращение отклонения от начального давления) манометры. По принципу действия скважинные манометры подразделяют на:
- пружинные, в которых чувствительный элемент – многовитковая, геликсная, трубчатая пружина;
- пружинно-поршневые, в которых измеряемое давление передается на поршень, соединенный с винтовой цилиндрической пружиной;
- пневматические, в которых измеряемое давление уравновешивается давлением сжатого газа, заполняющего измерительную камеру.
42. Выбор оборудования и приборов для исследования.
При исследовании скважин и спуске скважинных приборов используется специальное оборудование и устройства. Для исследования фонтанных и газлифтных скважин с целью предупреждения выброса нефти на поверхность применяют лубрикатор 6 (рис. 6.7).
У фонтанной скважины устанавливают мостки для спуска и подъема приборов из скважины. При проведении исследований автомашину с лебедкой устанавливают на расстоянии 20-40 м от устья так, чтобы ось барабана лебедки была перпендикулярна к проволоке, идущей от устья скважины к барабану.
Перед спуском прибора в скважину убеждаются в герметичности сальника лубрикатора. Прибор спускают со скоростью 0,7-0,8 м/с. При подходе прибора к заданной глубине скорость замедляют и при достижении заданной глубины полностью затормаживают барабан. Время выдержки прибора на заданной глубине определяется исходя из поставленных задач. Если измеряется только давление на забое, то прибор остается без движения на заданной глубине 20-30 мин. Если снимается кривая восстановления давления, то прибор выдерживают в течение 2-4 ч.
Из скважины прибор поднимают с помощью мотора автомашины на второй скорости. При достижении прибором глубины 30-50 м уменьшают скорость подъема, а за 5-7 м до устья его поднимают вручную. Убедившись, что прибор находится в лубрикаторе, и извлекают из него прибор. Открыв вентиль, снижают давление в лубрикаторе, перекрывают задвижку на буфере. Открыв вентиль, снижают давление в лубрикаторе и извлекают из него прибор. Затем разбирают прибор и извлекают бланк-диаграмму с записью давления во времени.
При исследовании скважин приборами с дистанционным измерением используют автоматическую промысловую электронную лабораторию АПЭЛ или АИСТ. В лаборатории АПЭЛ (рис.33) установлена малогабаритная лебедка для спуска глубинных манометров с местной регистрацией. В комплект лаборатории входят скважинные дистанционные приборы: расходомер-дебитомер РГД-2М, термометр Т4Г-1 и влагомер ВГД-2М. Сигнал от скважинного прибора передается по кабелю на вторичный блок соответствующего прибора, в котором сигнал усиливается и передается в блок частотомера, а затем передается на вход самопишущего потенциометра. Измеряемые параметры могут регистрироваться также с помощью стрелочных или цифровых приборов в координатах параметр-время или параметр-глубина.
Рис.33 Исследовательская лаборатория АПЭЛ.
1 - скважинные приборы; 2 - стенд вторичных приборов;
3 - лебедка; 4 - смоточное устройство; 5 - ролик; 6 - лубрикатор
Основные параметры - дебит и давление, используемые при обработке результатов исследования скважин, измеряют с помощью специальной аппаратуры. Так, дебит в системах сбора чаще измеряют объемным или весовым методом. Измерение расходов жидкости непосредственно в скважинах, когда требуется исследовать изменение расхода по длине фильтра, имеет свои особенности, обусловленные тем, что прибор в скважине может занимать самое различное положение (находиться в центре или лежать на стенке), в результате чего скоростной напор жидкости будет меняться и тем самым прибор будет регистрировать разный расход.
В связи с этим скважинные приборы имеют специальные устройства, предназначенные для направления всего потока через калибровочные отверстия прибора или для центровки положения скважинного прибора в стволе скважины. Первые называются пакерующими устройствами, вторые - центраторами.
В зависимости от назначения скважинные приборы для измерения расходов жидкости подразделяются на расходомеры, предназначенные для измерения расходов воды, нагнетаемой в скважину и дебитомеры, служащие для измерения дебитов нефти и газа. Конструктивное отличие этих групп приборов - диаметр корпуса снаряда. Расходомеры имеют диаметр корпуса больше, чем дебитомеры, так как спускаются в нагнетательные скважины, расход жидкости через которые выше, чем добывающих. Диаметр корпуса скважинных дебитомеров не превышает 40-42 мм.
Скважинные приборы расходомеры и дебитомеры могут быть с местной регистрацией и дистанционные, когда измерения расхода вторичными приборами регистрируются на поверхности. Преимущественное значение для исследования скважин получили приборы с дистанционной регистрацией. Среди приборов этого типа получили распространение расходомеры РГД-3, РГД-5, РГД-2М, ВРГД-1, скважинный комплексный прибор "Поток-4" и другие, а для измерения расхода закачиваемой в скважины горячей воды - расходомер "Терек-3".
Для измерения давления применяют скважинные манометры, которые выпускаются с местной регистрацией и дистанционные. Среди приборов с местной регистрацией наибольшее распространение получили геликсные скважинные манометры типов МГН-2, МПМ-4, МГИ-1М, МГИ-2М.
Приборы с местной регистрацией спускают в скважину на проволоке, а дистанционные приборы - на одножильном или трехжильном кабеле.