
- •Геофизические исследования скважин
- •Содержание
- •4.3.1 Основные задачи контроля технического состояния
- •Введение
- •1 Геофизические методы исследования скважин
- •1.1 Классификация методов гис
- •1.2 Соотношение методов, основанных на исследовании
- •1.3 Роль и место гис на стадиях горно–геологического процесса
- •2 Скважина как объект геофизических исследований
- •2.1 Схемы и технологии проведения гис
- •2.2 Основные марки геофизических (каротажных) кабелей
- •3. Кабель геофизический с плоской броней кг 3х0,75–58–130.
- •3 Геофизические методы исследований в открытом стволе скважин
- •3.1 Электрические методы исследования скважин
- •3.1.1 Электрические и электромагнитные свойства горных пород.
- •3.1.2 Удельное электрическое сопротивление горных пород.
- •3.1.3 Модификации электрического каротажа
- •3.1.4 Измерение кажущегося удельного сопротивления горных пород
- •3.1.5 Кривые кажущегося удельного сопротивления
- •3.1.6 Боковое каротажное зондирование (бкз)
- •3.1.7 Кажущееся удельное сопротивление пласта неограниченной мощности. Палетки бкз.
- •3.1.8 Микрозондирование (микрокаротаж)
- •3.1.9 Боковой каротаж
- •3.1.10 Боковой микрокаротаж
- •3.1.11 Индукционный метод каротажа скважин
- •3.1.12 Викиз
- •3.1.13 Литологическое расчленение разреза
- •3.1.14 Выделение коллекторов и оценка типа насыщения
- •3.1.15 Метод потенциалов собственной поляризации
- •3.1.16 Диффузионно–адсорбционные потенциалы
- •3.1.17 Фильтрационные и окислительно–восстановительные
- •3.1.18 Измерение потенциалов пс в скважинах и помехи при записи каротажных диаграмм
- •3.1.19 Обработка и интерпретация диаграмм пс
- •3.1.20 Метод потенциалов вызванной поляризации
- •3.1.21 Метод токового каротажа
- •3.1.22 Метод электродных потенциалов
- •3.2 Методы акустического каротажа
- •3.2.1 Акустический каротаж по скорости и затуханию
- •3.2.2 Аппаратура акустического метода
- •3.2.3 Метод шумометрии
- •3.3 Радиоактивный каротаж
- •3.3.1 Гамма–каротаж
- •3.3.2 Гамма–гамма–каротаж
- •3.3.3 Плотностной гамма – гамма – каротаж
- •3.3.4 Селективный гамма–гамма–каротаж
- •3.3.5 Нейтронный каротаж (стационарные нейтронные методы)
- •3.3.6 Нейтронный гамма–каротаж (нгк)
- •3.3.7 Нейтрон–нейтронный каротаж по тепловым (ннк–т) и
- •3.3.8 Импульсный нейтронный каротаж (инк)
- •3.3.9 Гамма–нейтронный каротаж
- •3.3.10 Нейтронно–активационный каротаж
- •3.3.11 Метод меченых атомов: применяемые модификации, физические основы, методика применения, область применения
- •3.3.12 Метод наведенной активности: физические основы, методика проведения, область применения
- •3.3.13 Новый способ и технология каротажа с использованием меченых веществ
- •3.4 Метод термометрии
- •3.4.1 Метод естественного теплового поля
- •3.4.2 Метод искусственного теплового поля
- •3.5 Кавернометрия
- •3.6 Профилеметрия
- •3.7 Метод пластовой наклонометрии
- •3.8 Современное приборное обеспечение и комплексы гис, применяемые за рубежом при строительстве и эксплуатации скважин
- •4 Контроль технического состояния скважин. Решаемые задачи
- •4.1 Измерение искривления скважин (инклинометрия)
- •4.2 Основные задачи контроля технического состояния крепи скважин
- •4.3 Оценка качества цементирования скважин
- •4.3.1 Акустический контроль качества цементирования скважин
- •4.3.2 Метод гамма–гамма–каротажа
- •4.3.3 Метод радиоактивных изотопов
- •4.3.4 Применение метода термометрии при контроле цементирования скважин
- •4.4 Общие положения контроля технического состояния обсадных колонн
- •4.4.1 Основные задачи контроля технического состояния обсадных колонн
- •4.4.2 Основные виды дефектов и повреждений обсадных колонн
- •4.5 Научно–обоснованная концепция контроля технического состояния обсадных колонн
- •4.6 Методы контроля технического состояния обсадных колонн
- •4.7 Определение мест притока воды в скважину, зон поглощения и затрубного движения жидкости
- •4.7.1 Новая технология определения мест негерметичности в муфтовых соединениях обсадных колонн
- •4.7.2 Новая технология определения источников обводнения добываемой продукции и выявления интервалов негерметичности заколонного пространства скважин
- •5 Схемы и технологии проведения гис в наклонно – горизонтальных скважинах
- •5.1 Горизонтальная скважина как объект геофизических исследований
- •5.2 Профили наклонно направленных и горизонтальных скважин
- •5.3 Технологии доставки геофизических приборов в горизонтальные скважины
- •5.4 Каналы связи, используемые при исследовании горизонтальных скважин
- •5.5 Технологии проведения гис в гс при бурении скважин
- •5.5.1 Технологии проведения гис в гс за рубежом
- •5.5.2 Технологии проведения гис в гс в России
- •5.6 Аппаратурно–методические комплексы и приборное обеспечение для проведения гис при эксплуатации скважин
- •6 Информативность и ограничения к применению геофизических методов в горизонтальных скважинах
- •6.1 Информативность геофизических методов в условиях гс
- •6.2 Особенности геофизических исследований разведочных горизонтальных скважин
- •6.3 Особенности геофизических исследований эксплуатационных горизонтальных скважин
- •7 Контроль за разработкой нефтегазовых месторождений геофизическими и газогидродинамическими методами
- •7.1 Использование данных промысловой геофизики для контроля за разработкой нефтяных и газовых месторождений
- •7.2 Общие принципы организации автоматизированной обработки данных гис
- •7.3 Основные задачи интерпретации данных гис
- •7.4 Контроль за изменением положения контактов газ-нефть-вода в эксплуатационных скважинах
- •7.5 Основные технические требования к подготовке действующих скважин для проведения геофизических и гидродинамических исследований
- •8 Техника безопасности при проведении гис
- •8.1 Общие положения
- •8.2 Требования к геофизической аппаратуре, кабелю и оборудованию
- •8.3 Геофизические работы при строительстве скважин
- •8.4 Геофизические работы при эксплуатации скважин
- •8.5 Прострелочно–взрывные работы
- •8.6 Ликвидация аварий при геофизических работах
- •Список использованной литературы
3.1.16 Диффузионно–адсорбционные потенциалы
Потенциалы диффузионно–адсорбционной природы возникают вследствие различия в химическом составе и концентрации солей, растворенных в пластовых водах и буровом растворе. На контакте растворов разной концентрации (или состава) происходит диффузия ионов из более концентрированного раствора в менее концентрированный.. Однако скорость диффузии неодинакова у разнополярных ионов. Вследствие разности в подвижности через некоторое время в более слабом растворе накопится избыток отрицательных ионов, а в концентрированном – положительных, и эти растворы приобретут соответствующий заряд. Наибольшей величины диффузионно–адсорбционные потенциалы достигают на границе пород с минимальной и максимальной адсорбционной активностью, т.е. на границе чистых кварцевых песчаников и тонко дисперсных глин. Поскольку глина не пропускает анионы (–) и пропускает катионы (+), то таким образом, раствор в скважине против глин приобретает положительный заряд, против песчаников – отрицательный.
Если допустить, что электрическое поле в скважине имеет только диффузионно–адсорбционное происхождение, то для случая, когда минерализация воды песчаного пласта Св больше минерализации глинистого раствора Сс или (если выразить минерализацию растворов через их сопротивления) pв<pс, справедливо схематическое распределение электрического поля (зарядов) в скважине, представленное на рис. 3.14.
Электродвижущие силы на границе песчаного и глинистого пластов возникают даже при одинаковой минерализации содержащихся в них вод вследствие различия адсорбционных свойств контактирующих сред (глинистый пласт можно рассматривать как мембрану между пластовой водой и промывочной жидкостью). На рис. 3.14 схематически показано направление токовых линий, возникающих под влиянием диффузионно–адсорбционных потенциалов. Эти линии замыкаются на пересечении стенок скважины с границей пласта, где плотность тока наибольшая. Известно, что уменьшение потенциала происходит в направлении движения тока и в местах максимальной его плотности наблюдается наибольшее изменение потенциала.
Рисунок 3.14 – Образование диффузионно–адсорбционного потенциала на контакте песчаного I и глинистого II пластов (б) и его эквивалентная электрическая схема в тождественных условиях (а):
1–направление диффузии солей; 2–токовые линии; 3– график статических потенциалов ПС; 4– график фактических потенциалов ПС (pв<pс)
В данном случае диффузионно–адсорбционный потенциал Еда=Кдаlg(pс/pв), а диффузионный Ед=Кдlg(pс/pв), где Кда и Кд – коэффициенты диффузионно–адсорбционного и диффузионного потенциалов. Следовательно, суммарные потенциалы в скважине:
|
Епс=Ед–Еда=(Кд–Кда) lg(pс/pв) = –Кпс Кдlg(pс/pв), |
(3.2) |
где Кпс=Кда–Кд – коэффициент статистической аномалии ПС или общий коэффициент диффузионно–адсорбционный ЭДС ПС. Знак минус перед величиной диффузионно–адсорбционного потенциала Еда связан с тем, что в контуре токовой линии ПС он включен в обратном направлении по отношению к диффузионному потенциалу Ед непосредственного контакта.
Если допустить, что в контуре ток отсутствует, то вдоль каждой из сред должно наблюдаться постоянство потенциала. Величина Епс, отражающая амплитуду изменения потенциала естественного поля, является в этом случае статической амплитудой диффузионно–адсорбционного потенциала для чистого песчаного пласта (см. рис. 3.14, кривая 3). Изменение петенциала естественного поля по стволу скважины на границах пластов происходит не скачками, а плавно. Разность потенциалов определяется произведением силы тока на сопротивление участка цепи, поэтому потенциалы, полученные против песчаного пласта и на границе его с глиной, будут различны (см. рис. 3.14, кривая 4). Согласно формуле (3.2) аномалия естественных потенциалов ПС против песчаного пласта имеет отрицательный знак, если глинистый раствор менее минерализован, чем пластовая вода (pф>pв) (прямые ПС), и положительный знак, если глинистый раствор более минерализован, чем пластовая вода (pф<pв) (обратные ПС). На рис.3.14 дана эквивалентная схема электрического поля ПС в скважине. Согласно этой схеме пласт песчаника, залегающий среди глин и пересеченный скважиной, рассматривается как электрохимическая ячейка. Линейные сопротивления Rвм, Rп и Rс соответственно эквивалентны сопротивлениям вмещающих пород (глин) пласта (песчаника) и столба промывочной жидкости в скважине. Электродвижущая сила естественного потенциала в скважине:
|
Епс=I*(Rвм+Rп+ Rс) |
(3.3) |
На участке скважины с сопротивлением Rс разность потенциалов ΔUпс=IRс соответствует полному изменению потенциала в скважине и является фактической амплитудой аномалии ΔUпс в пласте:
|
ΔUпс =Епс – I*(Rп+Rвм)
|
(3.4) |
Наибольшее значение фактической амплитуды ΔUпс, приближающееся к Епс, наблюдается против мощного чистого (неглинистого) пласта. При наличии в пласте глинистого материала коэффициент диффузионного потенциала принято обозначать через Кi да(Кi да>Кд). Если Кда=Кiда, то на основании выражений (3.3) можно записать
|
Епс=( Кi д а –Кда)lg(pф/pв)=(Аi да–Ада) lg(pф/pв)
|
(3.5) |
где Кда, Кiда и Ада, Аi да – коэффициенты соответственно диффузионно–адсорбционного потенциала и активности вмещающей среды и пласта.