
- •1. Основные характеристики потребителей и приемников электроэнергии
- •2. Характерные особенности электроустановок предприятий.
- •4. Общие требования, предъявляемые к системам электроснабжения. Обоснование решений при проектировании, расширении, реконструкции электроустановок.
- •5 Графики электрических нагрузок. Вероятностная модель случайного графика нагрузок. Построение годовых графиков нагрузок.
- •6 Требования, предъявляемые к электрическим сетям до 1000 в. Классификация помещений и наружных установок по окружающей среде. Схемы электрических сетей напряжением до 1000 в.
- •7. Расчет сетей по нагреву, по потерям напряжения, по экономической плотности тока. Выбор коммутационно – защитных аппаратов сетей и электроустановок до 1000 в.
- •11 Особенности защитных и рабочих заземлений в электроустановках. Режимы нейтрали электрических сетей различного класса напряжения.
- •12. Распределение электрической энергии при напряжении выше 1000 в. Требования к сетям. Особенности конструктивного выполнения электрических сетей предприятия при напряжении выше 1000 в.
- •15. Обоснование целесообразности ввода генерирующей мощности из условия полного электроснабжения потребителей в нормальном и ремонтном режимах.
- •16 Обоснование схем присоединения к электроэнергосистеме. Основные ограничения для систем электроснабжения в аварийных и послеаварийных режимах
- •20.Обоснование и выбор схем электростанций с газотурбинными и парогазовыми установками.
- •1 Основные виды отказов в системах электроснабжения и их отличительные признаки.
- •2. Показатели надежности невосстанавливаемых элементов.
- •3. Законы распределения, используемые в теории надежности. Оценка основных показателей надежности в период нормальной эксплуатации.
- •4. Показатели надежности восстанавливаемых элементов.
- •5. Оценка показателей надежности системы при последовательном и параллельном соединении невосстанавливаемых элементов
- •7. Оценка показателей надежности системы при последовательном и параллельном соединении восстанавливаемых элементов
- •2. Оценка динамической устойчивости системы электроснабжения методом площадей.
- •3. Статическая устойчивость узла нагрузки. Статическая устойчивость синхронных и асинхронных двигателей в узлах нагрузки.
- •4 Устойчивость при самозапуске двигателей нагрузки
- •5 Средства повышения динамической устойчивости системы электроснабжения
- •1 Автоматика включения синхронных генераторов на параллельную работу. Способы автоматического включения, микропроцессорные автоматические синхронизаторы
- •3. Микропроцессорная автоматизированная система управления частотой и активной мощности электроэнергетических систем.
- •4. Автоматические устройства повторного включения. Микропроцессорный комплект апв.
- •6. Микропроцессорная автоматика прекращения асинхронного режима.
- •8.Автоматизация диспетчерского управления электроэнергетическими системами.
- •10. Микропроцессорная автоматизированная система управления тепловыми электростанциями
- •1 Законодательство Российской Федерации по энергосбережению
- •3. Экономия электроэнергии за счет внедрения прогрессивных источников света и светильников.
- •4 Энергосбережение в системах отопления, водоснабжения и водоотведения. Требования по расчету за энергоресурсы по приборам учета.
- •6 Программы по энергосбережению и повышению энергетической эффективности.
- •8 Государственная информационная система по энергоэффективности.
- •9. Альтернативные возобновляемые источники энергии.
- •1 Краткая характеристика основных показателей качества электрической энергии согласно гост 13109-97.
- •3. Основные электроприемники, являющиеся источниками электромагнитных помех и влияющие на качество электрической энергии.
- •4 Требования к средствам измерения показателей качества электрической энергии.
- •5. Основные задачи и виды контроля кэ.
5 Графики электрических нагрузок. Вероятностная модель случайного графика нагрузок. Построение годовых графиков нагрузок.
График нагрузки–диаграмма изменения мощности (тока) электроустановки во времени. По виду фиксируемого параметра различают графики активной Р, реактивной Q, полной S мощностей и тока I электроустановки. Графики отражают изменение нагрузки за определенный период времени. По этому признаку их подразделяют на суточные (24 ч), сезонные, годовые и т. п.
По месту изучения или элементу энергосистемы, к которому они относятся, графики можно разделить на следующие группы: 1) графики нагрузки потребителей, определяемые на шинах подстанций; 2) сетевые графики нагрузки - на шинах районных и узловых подстанций;3) графики нагрузки энергосистемы, характеризующие результирующую нагрузку энергосистемы;
4) графики нагрузки электростанций.
Графики нагрузки используют для анализа работы электроустановок, для проектирования системы электроснабжения, для составления прогнозов электропотребления, планирования ремонтов оборудования, а также в процессе эксплуатации для ведения нормального режима работы.
Годовой график показывает длительность работы установки в течение года с различными нагрузками. По оси ординат откладывают нагрузки в соответствующем масштабе, по оси абсцисс — часы года от 0 до 8760. Построение годового графика продолжительности нагрузок производится на основании известных суточных графиков. На рис. показан способ построения графика при наличии двух суточных графиков нагрузки — зимнего (183 дня) и летнего (182 дня).
На стадии проектирования исходный ГЭН неизвестен, поэтому оценка расчетной нагрузки основывается на методе вероятностного моделирования и определяется выражением
где PР и QР – расчетные активная и реактивная мощности:
Здесь где PСР и QСР, DPθ, DQθ – средние значения и десперсии осредненных графиков нагрузки, β – статистический коэффициент, зависящий от вида закона распределения вероятностей ординат ГЭН и заданной граничной вероятности.
6 Требования, предъявляемые к электрическим сетям до 1000 в. Классификация помещений и наружных установок по окружающей среде. Схемы электрических сетей напряжением до 1000 в.
Сети напряжением до 1000 В осуществляют распределение электроэнергии внутри промышленных предприятий и установок и непосредственное питание большинства приемников электроэнергии. Схема сети определяется технологическим процессом производства, взаимным расположением источника питания подстанций и приемников электроэнергии и их единичной установленной мощностью.
К сетям напряжением до 1000 В, как и ко всякой электрической сети, предъявляют следующие требования. Они должны: обеспечивать необходимую надежность электроснабжения быть удобными, простыми и безопасными в эксплуатации; требовать минимальных приведенных затрат на сооружение и эксплуатацию; удовлетворять условиям окружающей среды; обеспечивать применение индустриальных методов монтажа.
В зависимости от характера окружающей среды и требований по защите электроустановок от ее воздействия в ПУЭ различают внутренние помещения и наружные установки. В свою очередь, внутренние помещения делятся на сухие, влажные, сырые, особо сырые, жаркие, пыльные, с химически активной средой, пожароопасные и взрывоопасные, а наружные (или открытые) установки - на нормальные, пожароопасные и взрывоопасные. Электроустановки, защищенные только навесами, относят к наружным.
Сухими считают помещения, в которых относительная влажность воздуха не превышает 60%. Если в таких помещениях температура не превышает 30 °С, нет технологической пыли, активной химической среды, пожаро- и взрывоопасных веществ, то их называют помещениями с нормальной средой. Влажные помещения характеризуются относительной влажностью воздуха 60...75 % и наличием паров или конденсирующейся влаги, выделяющихся временно и в небольших количествах. Большая часть электрооборудования рассчитана на работу при относительной влажности, не превышав 75 %, поэтому в сухих и влажных помещениях используют электрооборудование в нормальном исполнении. К влажным помещениям относят насосные станции, производственные цеха, где относительная влажность поддерживается в пределах 60...75%, отапливаемые подвалы, кухни в квартирах и т. п.
В сырых помещениях относительная влажность длительно превышает 75 % (например, некоторые цеха металлопроката, цементных заводов, очистных сооружений и т.п.). Если относительная влажность воздуха в помещениях близка к 100 %, т. е. потолок, пол, стены, предметы в них покрыты влагой, то эти помещения относят к особо сырым.
На отдельных производствах металлургической и других отраслей промышленности (например, в литейных, термических, прокатных и доменных цехах) температура воздуха длительное время превышает 30 °С. Такие помещения называют жаркими. Одновременно они могут быть влажными или пыльными.
Пыльными считают помещения, в которых по условиям производства образуется технологическая пыль в таком количестве, что она оседает на проводах, проникает внутрь машин, аппаратов и т.д.
Различают пыльные помещения с токопроводящей и нетокопроводящей пылью. Пыль, не проводящая ток, не ухудшает качество изоляции, однако благоприятствует увлажнению ее и токоведущих частей электрооборудования вследствие своей гигроскопичности.
В помещениях с химически активной средой по условиям производства постоянно или длительно содержатся пары или образуются отложения, разрушающие изоляцию и токоведущие части электрооборудования.
Пожароопасными называют помещения, в которых применяют или хранят горючие вещества. По степени пожароопасности их подразделяют на три класса: ГТ-1, П-И, П-Па. К первому классу относятся помещения, в которых используют или хранят пожароопасные жидкости, ко второму классу - помещения, по условиям производства в которых выделяется взвешенная горючая пыль, не образующая взрывоопасных концентраций, а к последнему классу - помещения, где хранятся и используются твердые или волокнистые горючие вещества, не образующие взвешенных в воздухе смесей.
Взрывоопасными называют помещения, в которых по условиям производства могут образоваться взрывоопасные смеси горючих газов или паров с воздухом, кислородом или другими газами - окислителями горючих веществ, а также смеси горючих пылей или волокон с воздухом при переходе их во взвешенное состояние.
Взрывоопасные установки по степени опасности использования электрооборудования разделяют на шесть классов: В-1, В-1а, В-16, В-Тт, В-П и В-Па. В установках класса В-1 по условиям про¬изводства может происходить недлительное образование взрывоопасных смесей горючих газов или паров с воздухом либо другим окислителем при нормальных технологических режимах. К классу В-1 а относят установки, в которых взрывоопасные смеси паров и газов могут образоваться только при авариях или неисправностях технологического оборудования. Для установок класса В-16 характерно лишь местное образование взрывоопасных концентраций паров и газов в воздухе в незначительных объемах при надежно действующей вентиляции. Наружные установки, образующие опасные кчрывные концентрации горючих газов или паров, относят к классу В-1 г. В установках класса В-П могут создаваться взрывоопасные концентрации взвешенных горючих пылей при нормальной работе технологического оборудования, а в установках класса В-Па - лишь при авариях или неисправностях.
Наружные установки, в которых перерабатывают или хранят горючие жидкости либо твердые горючие вещества (открытые склады минеральных масел, угля, торфа, дерева и т.п.), относятся к пожароопасным класса П-Ш.
Помещения классифицируют по наиболее высокому классу взрывоопасное расположенных в них установок. Агрессивная, сырая, пыльная и подобные им среды не только ухудшают условия работы электрооборудования, но и повышают опасность электроустановок для обслуживающих их людей. Поэтому в ПУЭ помещепия в зависимости от возможности поражения людей электрическим током подразделяют на три группы: с повышенной опасностью, особо опасные и без повышенной опасности.
Большинство производственных помещений относятся к помещениям с повышенной опасностью, т. е. для них характерны наличие сырости (относительная влажность длительное время превышает 75 %) или проводящей пыли, токопроводящих полов (металлических, земляных, железобетонных, кирпичных), высокой температуры (длительное время превышающей 30 °С), а также возможности одновременного прикосновения человека к соединенным с землей металлоконструкциям зданий, технологическим аппаратам, механизмам, с одной стороны, и к металлическим корпусам электрооборудования - с другой.
Для особо опасных помещений характерны особая сырость или наличие химически активной среды либо двух и более условий повышенной опасности.
Если в помещениях отсутствуют условия, создающие повышенную или особую опасность, их называют помещениями без повышенной опасности.
Схемы электрических сетей бывают радиальными, магистральными и смешанными.
Радиальные схемы характеризуются тем, что от источника питания, например от распределительного щита /, отходят линии, питающие непосредственно мощные приемники электроэнергии или отдельные распределительные пункты, от которых по самостоятельным линиям питаются более мелкие приемники.
Примерами радиальных схем могут служить сети насосных или компрессорных станций, а также сети взрыво- и пожароопасных помещений и установок. При радиальных схемах используются изолированные провода и кабели.
Радиальные схемы обеспечивают высокую надежность питания отдельных потребителей, так как при аварии отключается только поврежденная линия. Все потребители могут потерять питание только при повреждении на сборных шинах.
Радиальные схемы позволяют легче решать задачи автоматизации. Однако сети, построенные по таким схемам, требуют больших капитальных вложений из-за значительного расхода проводов и кабелей, большого количества защитной и коммутационной аппаратуры и обладают худшими экономическими показателями.
Магистральные схемы находят наибольшее применение при равномерном распределении нагрузки от распределительных щитов и при питании приемников электроэнергии одного технологического агрегата или одного технологического процесса. Магистрали выполняют кабелями, проводами, шинопроводами и присоединяют к распределительным щитам / под-станции или непосредственно к трансформатору при схеме трансформатор — магистраль.
Магистральная схема менее надежна, чем радиальная, поскольку при повреждении магистрали происходит отключение всех потребителей, присоединенных к ней. Применение резервирования по сети устраняет этот недостаток.
В отдельных случаях, когда требуется высокая степень надежности питания приемников электроэнергии, применяется двухстороннее питание магистральной линии.
В чистом виде радиальные и магистральные схемы применяются редко. Наибольшее распространение получили смешанные схемы, сочетающие в себе элементы магистральных и радиальных схем и позволяющие рациональнее использовать преимущества тех и других.
Для повышения надежности применяют схемы с взаимным резервированием, устройством перемычек между отдельными магистралями или соседними подстанциями при радиальном питании.