
- •Введение
- •Глава 1 Основные понятия об управлении дорожным движением
- •1.1. Термины и определения
- •Классификация технических средств
- •1.3. Показатели эффективности применения технических средств
- •Глава 2 Светофоры
- •2.1. Значение и чередование сигналов
- •2.2. Типы светофоров
- •2.3. Светотехнические параметры
- •2.4. Конструкция светофоров
- •2.5. Размещение и установка светофоров
- •Глава 3 Режимы работы светофорной сигнализации на перекрёстке
- •3.1. Критерии ввода светофорной сигнализации
- •3.2. Основы жесткого программного управления
- •3.3. Пофазныи разъезд транспортных средств
- •3.4. Управление движением по отдельным направлениям перекрестка
- •3.5. Расчет длительности цикла и его элементов
- •3.6. Светофорный цикл с полностью пешеходной фазой
- •3.7. Задержки транспортных средств
- •3.8. Принципы автоматизированного проектирования режима светофорной сигнализации
- •3.9. Адаптивное управление
- •Глава 4 Дорожные контроллеры
- •4.1. Назначение и классификация
- •4.2. Структурная схема контроллера
- •4.3. Программно-логические и исполнительные устройства
- •4.4. Принципы коммутации ламп светофоров
- •4.5. Применение микропроцессоров в дорожных контроллерах
- •4.6. Характеристика контроллеров отечественного производства
- •Глава 5 Детекторы транспорта
- •5.1. Назначение и классификация
- •5.2. Характеристика детекторов отечественного производства
- •5.3. Размещение детекторов
- •Глава 6 Технические средства координированного управления
- •6.1. Основы координированного управления
- •6.2. Методы расчета программ координации
- •6.3. Общая и местная коррекция программ
- •6.4. Техническая реализация систем координированного управления
- •Глава 7 Технические средства общегородских автоматизированных систем управления дорожным движением
- •7.1. Структура систем и методы управления движением
- •7. 2. Периферийное оборудование системы
- •7. 3. Управляющий вычислительный комплекс
- •7.4. Средства диспетчерского управления
- •7.5. Характеристика отечественных асуд
- •7.6. Системы управления движением на автомобильных дорогах
- •Глава 8 Дорожные знаки
- •8.1. Назначение и классификация
- •8.2. Установка и зоны действия знаков
- •8.3. Применение дорожных знаков в различных условиях движения
- •8.4. Конструкция дорожных знаков
- •Глава 9 Дорожная разметка
- •9.1. Виды дорожной разметки и ее назначение
- •9.2. Применение горизонтальной разметки в различных дорожных условиях
- •9.3. Условия применения вертикальной разметки
- •9.4. Материалы и оборудование для нанесения разметки
- •Глава 10 Средства организации движения пешеходных потоков
- •10.1. Характер взаимодействия конфликтующих транспортных и пешеходных потоков
- •10.2. Технические средства организации движения на пешеходных переходах
- •10. 3. Пешеходные вызывные устройства
- •10. 4. Направляющие пешеходные ограждения
- •Глава 11 Технические средства управления в особых условиях движения
- •11.1. Управление движением на железнодорожных переездах
- •11. 2. Управление движением в транспортных тоннелях, на мостах и путепроводах
- •11. 3. Управление движением транспортных средств общего пользования
- •11. 4. Управление реверсивным движением
- •Техническими средствами реализации реверсивного движения
- •11. 5. Управление движением в местах производства работ на проезжей части
- •Глава 12 Монтаж и эксплуатация технических средств
- •12. 1. Задачи монтажно-эксплудтационнои службы
- •2. Специализированные монтажно-эксплуатационные подразделения
- •12. 3. Проектирование светофорных объектов
- •12. 4. Строительно-монтажные работы
- •12. 5. Организация технического обслуживания
- •Список литературы
- •Оглавление
- •11. 5. Управление движением в местах производства работ на проезжей части
Глава 5 Детекторы транспорта
5.1. Назначение и классификация
Детекторы транспорта предназначены для обнаружения транспортных средств и определения параметров транспортных потоков. Эти данные необходимы для реализации алгоритмов гибкого регулирования, расчета или автоматического выбора программы управления дорожным движением.
Любой детектор (рис. 5.1) включает в себя чувствительный элемент (ЧЭ), усилитель-преобразователь и выходное устройство (ВУ).
Чувствительный элемент непосредственно воспринимает факт прохождения или присутствия транспортного средства в контролируемой детектором зоне в виде изменения какой-либо физической характеристики и вырабатывает первичный сигнал.
Усилитель-преобразователь усиливает, обрабатывает и преобразовывает первичные сигналы к виду, удобному для регистрации измеряемого параметра транспортного потока. Он может состоять из двух узлов: первичного и вторичного преобразователей. Первичный преобразователь усиливает и преобразует первичный сигнал к виду, удобному для дальнейшей обработки. Вторичный преобразователь обрабатывает сигналы для определения измеряемых параметров потока, представления их в той или иной физической форме. В отдельных детекторах вторичный преобразователь может отсутствовать или совмещаться с первичным в едином функциональном узле.
Выходное устройство предназначено для хранения и передачи по специально выделенным каналам связи в УП или контроллер сформированной детектором транспорта информации.
Д
етекторы
транспорта можно классифицировать по
назначению, принципу действия
чувствительного элемента и специализации
(измеряемому ими параметру).
По назначению детекторы делятся на проходные и присутствия.
Проходные детекторы выдают нормированные по длительности сигналы при появлении транспортного средства в контролируемой детектором зоне. Параметры сигнала не зависят от времени нахождения в этой зоне транспортного средства. Таким образом, этот тип детекторов фиксирует только факт появления автомобиля, что необходимо для реализации алгоритма поиска разрыва в потоке. В силу этого проходные детекторы нашли наибольшее распространение.
Детекторы присутствия выдают сигналы в течение всего времени нахождения транспортного средства в зоне, контролируемой детектором. Эти типы детекторов по сравнению с проходными применяются реже, так как они предназначены в основном для обнаружения предзаторовых и заторовых состояний потока, определения длины очередей, транспортных задержек.
По принципу действия чувствительные элементы детекторов транспорта можно разделить на три группы: контактного типа, излучения, измерения параметров электромагнитных систем.
Чувствительные элементы контактного типа бывают электромеханические, пневмо- и пьезоэлектрические. Их объединяет то, что сигнал о появлении автомобиля возникает от непосредственного его соприкасания с ЧЭ (в электромеханическом — с электрическим контактором, в пневматическом — с шлангом, в пьезоэлектрическом — с пьезоэлементом).
Электромеханический ЧЭ состоит из двух стальных полос, завулканизированных герметически резиной. Его устанавливают перпендикулярно к направлению движения транспортных средств на уровне дорожного покрытия. При наезде колес автомобиля на ЧЭ контакты замыкаются, и формируется электрический импульс.
Пневмоэлектрический ЧЭ представляет собой резиновую трубку, заключенную в стальной лоток. Лоток состоит из секций, эластично соединенных между собой, что позволяет устанавливать ЧЭ поперек проезжей части в соответствии с профилем дороги. Один конец резиновой трубки заглушён, а другой связан с пневмореле. При наезде автомобиля на трубку давление воздуха в ней повышается, действуя на мембрану пневмореле и замыкая его электрические контакты. Стальной лоток устанавливают в бетонном основании таким образом, чтобы усилия от колес автомобиля воспринимались лотком и окружающим его бетоном. Это гарантирует определенный зазор между стенками трубки в момент сжатия, что позволяет в случае остановки автомобиля на трубке детектора не перекрывать ее полностью и таким образом регистрировать другие проходящие автомобили.
Пьезоэлектрический ЧЭ представляет собой полимерную пленку, обладающую способностью поляризовать на поверхности электрический заряд при механической деформации. Для предохранения от механических повреждений пленку оборачивают резиновой лентой, а ленту, в свою очередь, латунной сеткой, являющейся одновременно электростатическим экраном. Чувствительный элемент1 крепят на поверхности дорожного покрытия металлическими скобами.
Чувствительные элементы контактного типа сравнительно просты по конструкции и монтажу. Однако им присущ общий недостаток — счет числа осей, а не числа автомобилей. Для устранения этого недостатка в схеме детектора необходимо применять специальный временной селектор. Кроме этого, их работоспособность зависит от климатических условий (обледенение дорожного покрытия, снежные заносы и т. п.). Поэтому такие детекторы транспорта не получили широкого распространения.
К
ЧЭ излучения можно
отнести фотоэлектрические, радарные,
ультразвуковые.
Фотоэлектрический ЧЭ включает в себя источник светового луча и приемник с фотоэлементом. При прерывании луча транспортным средством изменяется освещенность фотоэлемента, что вызывает изменение его электрических параметров. Луч света должен быть направлен поперек проезжей части. Поэтому излучатель и фотоприемник располагают по разные стороны дороги напротив друг друга. Они могут размещаться и в одном корпусе. В этом случае луч света отражается от установленного на противоположной стороне дороги зеркала. В качестве источников излучения могут применяться лампы накаливания, источники инфракрасного излучения и т. п. Недостатком фотоэлектрических ЧЭ является погрешность измерений, возникающая при многорядном интенсивном движении автомобилей. Кроме этого, подобные ЧЭ не обладают необходимой надежностью: на их работу оказывают большое влияние пыль, грязь, дождь, снег. Это обусловливает необходимость постоянного надзора за их работой. Вместе с тем благодаря сравнительно простой установке чувствительных элементов фотоэлектрические детекторы нашли применение для научно-исследовательских целей при кратковременных обследованиях дорожного движения.
Радарный ЧЭ представляет собой направленную антенну, устанавливаемую сбоку от проезжей части или над ней. Излучение направляется вдоль дороги и, отражаясь от движущегося автомобиля, принимается антенной. Радарный детектор не только фиксирует факт проезда автомобилем контролируемой зоны, но и его скорость по разности частот колебаний излученной и отраженной радиоволн (эффект Доплера).
Ультразвуковой ЧЭ представляет собой приемоизлучатель импульсного направленного луча. Он выполнен в виде параболического рефлектора с помещенным внутри пьезоэлектрическим преобразователем, генерирующим ультразвуковые импульсы. Приемоизлучатель устанавливают над проезжей частью на высоте 7—1U м. В работе этого детектора используется принцип отражения ультразвуковых импульсов от поверхности проходящего автомобиля. Автомобиль регистрируется при обнаружении разницы в интервалах времени от момента посылки до приема импульсов, отраженных от автомобиля или дорожного покрытия. Недостатками ультразвуковых ЧЭ являются его чувствительность к акустическим и механическим помехам и необходимость жесткого фиксирования в пространстве для того, чтобы приемоизлучатель противостоял действию ветровой нагрузки.
К ЧЭ измерения параметров электромагнитных систем можно отнести магнитные и индуктивные ЧЭ.
Магнитный ЧЭ состоит из катушки с магнитным сердечником. Катушку помещают в трубу для защиты от повреждений и закладывают под дорожное покрытие на глубину 15—30 см. Автомобиль регистрируется благодаря искажению магнитного поля в момент его прохождения над ЧЭ. Недостатками этого детектора являются низкие помехоустойчивость и чувствительность. 1'ранс-портные средства, движущиеся с малыми скоростями (менее 10 км/ч), он не регистрирует.
Индуктивный ЧЭ представляет собой рамку, состоящую из одного-двух витков изолированного и защищенного от механических воздействий провода (рис. 5.2). Рамку закладывают под дорожное покрытие на глубину 5—8 см. При прохождении над рамкой автомобиля, обладающего металлической массой, ее индуктивность изменяется и автомобиль регистрируется.
Специализация детектора зависит от параметра транспортного потока, для определения которого он предназначен (интенсивность, плотность, состав, скорость и т. д.). Принципы построения детекторов основаны на методах прямого и косвенного определения этих параметров.
Прямыми методами определяют момент прохождения автомобилем контролируемой зоны tПР и время присутствия автомобиля в этой зоне τПР. Остальные параметры определяют косвенно через эти показатели.
Среднюю скорость автомобиля Vа, м/с, определяют по времени прохождения им базового расстояния 1 между сечениями дороги i и j:
где lij— расстояние между сечениями i и j, м; tПРi и tПРj — моменты прохождения автомобилем соответственно сечений дороги i и j, с.
Временной интервал между п-м и (п— 1)-м автомобилями Δt в одном и том же сечении дороги Δt= tПР(n) - tПР(n-1)
Число автомобилей между сечениями i и j в момент времени с.
nij (t) = ni (t) — nj (t) + nij (0),
где ni (t), nj (t) — число автомобилей, прошедших за время t соответственно через сечения i и j; nij (0)— начальное число автомобилей между этими сечениями.
Длина автомобиля
La = τПРVa - bДТ (5.1)
где bДТ — длина контролируемой детектором зоны, м.
Естественно, в случае остановки автомобиля в контролируемой детектором зоне формула (5.1) теряет смысл.