
- •Оптоэлектроникаға кіріспе
- •Талшықты оптикаға кіріспе
- •Оптикалық электрониканың ерекшеліктері
- •Оптоэлектрониканың даму тарихы
- •1.4. Оптоэлектронды элементті базаның қазіргі уақыттағы күйі
- •1.5.Оптоэлектронды құрылғылар индекацияларын белгілеу жүйесі
- •1.6. Фотоқабылдағыш құрылғылардың және оптрондардың белгілеу жүйесі
- •Оптоэлектрониканың физикалық негіздері
- •2.1. Фотометриялық және энергетикалық сипаттамалардың айырмашылықтары
- •2.2. Оптикалық сәулеленудің фотометриялық сипаттамалары
- •2.2.1. Көріну функциясы және оның электромагнитті толқын ұзындығынан тәуелділігі
- •2.1 Кесте
- •2.2.2. Дененің бұрышы, жарықтық ағын және жарықтың механикалық эквиваленті
- •2.2.3. Жарық күші (IV)
- •2.2.4. Беттің жарықтануы (е)
- •2.3. Сурет. Жарықтануды анықтау
- •2.2.5. Жарықтылық заңы
- •2.2.6. Сәулеленетін беттін жарықтылығы (м)
- •2.2.7. Жарық беттің ашықтығы (l)
- •2.2.8. Ламберт заңы
- •2.2.9. Жарықтық экспозиция (Нv)
- •2.2. Кесте
- •2.3.1. Энергетикалық экспозиция (Не)
- •2.6. Сурет. Адам көзінің сезгіштігінің спектралды сипаттамасы
- •2.5. Колометриялық параметрлер
- •2.6. Оптикалық сәулеленудің когеренттілігі.
- •2.6.1. Монохроматты электромагнитті толқын
- •2.6.2. Электромагнитті толқындардың сәулеленуінің ультракүлгін, корінетін жарық және инфрақызыл диапазондардағы ерекшеліктері
- •2.6.3. Оптикалық сәулеленудің реалды параметрлері мен τк және lк арасындағы өзара байланыс
- •2.7. Кванттық өткелдер және сәулеленетін өткелдердің ықтималдығы
- •2.7.1. Энергетикалық деңгейлер және кванттық өткелдер
- •2.7.2. Спонтанды өткелдер
- •2.7.3. Мәжбүрлі өткелдер
- •2.7.4. Эйнштейн коэффициенттері арасындағы қатынастар
- •2.7.5. Релаксациялық ауысулар
- •2.8. Спектрлік сызық кеңдігі
- •2.9. Электромагнитті өрістің күшеюі үшін мәжбүрлі ауысуларды қолдану
- •2.10. Шалаөткізгіштердегі сәулелену генерациясының механизмі
- •2.12.Сурет. Р-n-ауысудағы тасымалдаушылардың рекомбинациясы
- •2.11. Тік зоналы және тік зоналы емес шалаөткізгіштер
- •2.3. Кесте
- •2.12. Сыртқы кванттық шығыс және сәулелену шығыны
- •2.13. Гетероструктуралар негізіндегі сәуле шығаршыштар
- •2.14. Қатты денелердегі жарықтың жұтылуы
- •2.15. Өткелдер типтері және сәулеленуші шалаөткізгіш құрылымының сипаттамасы.
- •2.16. Оптикалық сәулеленудің параметрлері
- •Оптикалық толқынжүргізгіштер (волноводы)
- •3.1.Сынудың абсолютті көрсеткіші
- •3.2. Жарықтың сыну және шағылу заңдары
- •3.2.1.Жалпы мәліметтер
- •3.2.2. Жарықтың екі орта шекарасынан толық ішкі шағылысу шарты
- •3.3. Планарлық симметриялық оптикалық толқынжүргізгіштің конструкциясы
- •3.4. Гаусс-Хенхен эффектісі
- •3.5. Планарлы толқынжүргізгіш үшін көлденең резонанс шарты
- •3.6. Оптикалық сәулелену модасы
- •3.7. Цилиндрлік диэлектрлік толқынжүргізгіштің - стеклоталшықтың (св) конструкциясы
- •3.8. Стеклоталшықтың номиналды сандық апертурасы
- •3.9. Стеклоталшықта φ және γ бұрыштарының квантталуы
- •3.10. Стеклоталшықтағы импульсті сигналдарды кеңейту
- •3.10.1. Жарықтық шоқтың таралуына негізделген импульстік оптикалық сигналды кеңейту
- •3.10.2. Материалды дисперсияға негізделген импульсті оптикалық сигналды кеңейту
- •3.11. Градиентті жарықтыталшықтар қасиеттері
- •3.11.1. Жарықтықталшықтағы жарық рефракциясы
- •3.14. Сыну көрсеткішінің тербелмелі өзгеру ортасынжағы жарық рефракциясы
- •3.11.2. Градиентті стеклоталшықтар модаралық дисперсияны төмендету әдісі ретінде
- •3.12. Жарықтық толқынның е өрісінің электрлік компонеттерінің стационарлық толқынды теңдеуі және оның шешімі.
- •3.13. Шыныталшық бойымен тарала алатын мод-тың шекті саны.
- •Шыныталшықтағы оптикалық сигналдардың шығын түрлері
- •Материалдық дисперсияға сәйкес шығындар
- •Шыныталшықтыдағы рэлелік жарық таралуымен байланысқан шығындар
- •Шыны талшықтыда он гидроқышқыл топта болумен шартталған шығындар
- •3.27 Сурет сөну коэффициенті
- •3.30 Сурет периодтты екіеселі микроторлы бейнеде
- •4,1 Сурет шығарылатын жарықтың жіңізшке спектрлі диапазон жиілі.
- •4.2 Сурет светадиодтың сәуле шығару 4.3 сурет светодиодтың қосылуы
- •4.4 Сурет Светодиодтың вас 4.5 сурет вас түзу бағыттарының тиым салынған зонада қолданылатын материалдар айырмашылығы
- •4.6 Сурет спектральді диапазон және максималды фотосезгіш шалаөткізгіш материал структурасы
- •4.7 Сурет мезгілдік диаграмма
- •4.8 Сурет жарықтың тоқ(а) пен кернеуге (б)байланысы
- •Светодиодтардың құрылымы
- •4.6 Сурет
- •Светодиод қозуының негізгі схемалары
- •4.10 Суретте светодиод қозуының негізгі схемасы
- •Жарық диод түрлерін таңдау(выбор типа светодиода)
- •Жарық диодын таңдау негізі
- •4.11 Сурет
- •Светодиодтың электрлік моделі
- •Светодиодтардың инфроқызыл сәуле шығаруы
- •Ақ харық пен үлкен жарық көзі бар светодиодтар
- •4.14 Сурет ақ жарықтың алынуы 4.14 сурет сары люминаформен қапталған көк светадиод арқылы ақ жарықтың алынуы
- •Когерентті сәуле шығару құралдары
- •5.1 Сурет лазердегі кванттық ауысу
- •Лазердің құрылымды схемасы
- •Кристалды диэлектрик негізіндегі лазерлер
- •5.3 Сурет 5.4 сурет рубинді лазер схемасы
- •Сұйықтық лазері
- •5.6 Сурет
- •Газды лазерлер
- •Шалаөткізгіштің құрылымы және әрекеттік ұстанымы инжекция монолазері
- •Шалаөткізгіштің құрылымы және әрекеттік ұстанымы гетероструктурамен
- •Талшықты -Оптикалық күшейткiштер және лазерлер
- •Талшықты лазерлер
- •Негiзде талшықты лазерлер мәжбүр Комбинациялық шашырату
- •Сәулелену диодтары үшiн талшықты- оптикалық жүйелер
- •Лазер және жарық диодтарының Салыстырмалы сипаттамасы
- •Сурет қабылдағыш қалыптары мінездеме, параметрлері
- •Сурет қабылдағыш мінездемелері
- •Сурет қабылдағыштың параметрлері
- •Сурет қабылдағыш параметрлері сияқты оптопар элементі
- •Көз өзгеше құрамды фотоқабылдағыш есебінде
- •Фотоқабылдағыштардың шулық параметрлері
- •Фотоқабылдағыштардың электрлік моделдері
- •Фотоқабылдағыштардың шулы моделдері
- •Шоттки фотодиодтары
- •Гетероқұрылымды фотодиодтар
- •Лавинді фотодиодтар
- •Фототранзисторлар
- •Фототиристорлар
- •Фоторезисторлар
- •Фоторезистордың негізгі сипаттамалары мен параметрлері
- •Заряд байланысы бар құрал – қабылдағыш фотоқұралдар
- •Пиротехникалық фотоқабылдағыштар
- •7 Тарау оптрондар
- •Оптрондардың жұмыс істеу принципі және құрылғысы
- •Оптронның структуралық схемасы
- •Оптрондардың параметрлері және классификациясы
- •Оптронның электрлік моделі
- •Резисторлық оптопарлар
- •Диодты оптопарлар
- •Транзисторлы оптопарлар
- •Тиристорлы оптопарлар
- •Динамикалық таралу эффектісі негізіндегі ұяшықтар(дт-ұяшықтары)
- •Твист-эффект негізіндегі ұяшықтар
- •8.1.3.Твист эффектісі негізіндегі ұяшықтар
- •8.1.4.Жки(сұыйқкристалды индикатор) негізгі типтері және параметрлері
- •Ск индикаторды қосу схемасы
- •Көпразрядты индикатормен басқару схемасы
- •Электролюминесценттік индикаторлар(эли)
- •Эли құрылғысы және оның жұмыс істеу принципі
- •Эли параметрлері мен типтері
- •Эли қосу схемалары
- •Плазмлы панельдер және олардың негізіндегі құрылғылар
- •Электрохромды индикаторлар
- •8.5. Индикаторлық құрылғылар арқылы ақпараттың бейнеленуі
- •Оптоэлектрондық құрылғылардың қолданылуы
- •Оптоэлектрондық генераторлардың жұмыс істеу принципі және құрылғылар.
- •Блокинг-генертаор
- •Сызықты өзерілмелі кернеу генераторы
- •9.2 Сурет.Сызықты өзгермелі кернеу оптронды генераторы.
- •Вин көпірлі генетраор
- •9.3 Сурет Вин көпірлі оптоэлектронды генератор схемасы.
- •Оптоэлектронды құрылғылардың аналогты кілттерде және регуляторларда қолданылуы.
- •9.4 Сурет Оптрондардың аналогты құрылғыларда қолданылу мысалы
- •Логикалық функцияларды орындау үшін оптрондардың қолданылуы
- •9.8 Сурет Операцияны орындауға арналған оптрондық логикалық элементтер;
- •Оптрондардың электрорадиокомпоненттердің аналогы ретінде қолданылуы
- •Оптоэлектрондық күшейткіштердің жұмыс істеу принипі мен құрылғысы
- •9.9 Сурет
- •Оптоэлектронды сандық кілттердің құрылғысы және жұмыс істеу принципі
- •9.11 Сурет
- •Оптоэлектронды құрылғылардың жоғары қуатты құрылғыларды басқару мен жоғары кернеуді өлшеу үшін қолданылуы
- •Ақпаратты жазудағы оптикалық құрылғылардың жұмыс істеу принципі.
- •9.14 Сурет
- •Лазерлік-оптикалық ақпаратты оқудағы принцип
- •9.15Сурет
- •9.17 Сурет
- •Компакт дискіден ақпараттың ойнауы мен сандық оптикалық жазудың принципі
- •Компакт-диск құрылғысы
- •Компакт-дискке жазу
- •Штампталғаннан айырмашылығы.
- •Дисктердің маркировкасы
- •Қарағандағы пайдалану уақыты
- •Компакт-дискілердің жасалынуы мен тиражированиесі.
- •Компакт-дисктердің ойналуы
- •9.18 Сурет
- •Cd дағы дыбыстық сигналдардың параметрлері
- •Джиттер
- •Оптоэлектронды сенсорлы жүйелер адамның электрондық техникамен әрекеттесуі
- •9.21 Сурет
- •9.26 Сурет
- •Опто-волоконды байланыс жүйесі
- •Жалпы мағлұмат
- •Оптоталшықты жүйелер таралуы
- •Оптоталшықты жүйелер таралуы классификациясы
- •Оптоталшықты таралу жүйелерінің схемалары
- •10.2 Сурет
- •Оптикалық таратқыштар
- •10.3 Сурет
- •10.4 Сурет
- •10.5 Сурет
- •10.6 Сурет
- •Опто-волоконды байланс жүйесінің қабылдағыштары
- •Оптикалық сәулелену қабылдағыштары
- •10.7 Сурет
- •10.9 Сурет
- •Қабылдайтын оптоэлектронды модульдер
- •10.10 Сурет
- •Сандық опто-волокондық байланыс жүйесі
- •10.11 Сурет
- •10.12 Сурет
- •10.13 Сурет
- •Аналогты талшықты -оптикалық байланыс жүйелері
- •Смартлинк негізіндегі “Ақылды” байланыстырғыштар.
- •10.7.1. Смартлинктің техникалық шешімдері
- •Өздігінен құрылатын компьютерлер
- •Оптоталшықты нейроинтерфейстер
- •Мүмкіндік желілері үшін талшықты-оптикалық технологиялар.
- •Жалпы мәліметтер
- •10.8.2 Мүмкіндік желілерінін әлемдік дамуынын үрдістері
- •10.8.3 Оптикалық мүмкіндік желілерінін технологиялары
- •Оптикалық мүмкіндік желілерінің категориялары
- •10.8.5 FttBusiness- бизнес үшін талшық
- •10.8.6. Ftth – үйге арналған талшық
- •10.8.7. Fttb – көп пәтерлі үй үшін талшық
- •10.8.8. Ауылдық аймаққа арналған талшық
- •Нанофотониканың физикалық негіздері
- •11.1.Нанофотоникаға кіріспе
- •11.2. Төменгі өлшемді объектілердің классификациясы
- •11.3. Жартылайөткізгіштердегі кванттық эффект
- •11.4. Наноматериалдардың оптикалық ерекшеліктері
- •11.4.2 Металдық нанокластерлердің оптикалық қасиеттері
- •11.4.3. Шалаөткізгішті нанокластерлердің оптикалық қаси
- •11.4.4.Фотонды нанокристалдар
- •11.4.5. Квантты шұңқырлардың оптикалық қасиеттері
- •11.4.6. Кванттық нүктелердің оптикалық қасиеттері
- •11.5. Лазерлер жасалуында квантты- өлшемдік эффектерді қолдану
- •12.1. Жалпы түсінік
- •12.2. Наноэлектронды лазерлер
- •12.2.1. Горизонталды резонаторлары бар наноэлетроникалы лазерлер
- •12.2.2 Вертикальды резонаторлары бар наноэлектронды лазерлер
- •12,6 Сурет. , кезінжегі лвр-2 ватт-амперлік сипаттамалары
- •12,7 Сурет. Лвр-1 вольт-амперлік сипаттамалары:
- •12.2.3.Оптикалық модуляторлар
- •12.3. 12.3.1. Наноэлектронды құрылғылар және сұйық кристаллды негіздегі жүйелер
- •12.3.2.Электрооптикалық модулятор
- •12.3.3 Жарық клапанды модулятор
- •12.3.4. Жалпақ теледидарлар, дисплей және видеопроекторлардың жарық клапанды модуляторы
- •12.3.5. Кең қолданыстағы сұйық кристаллды дисплей.
- •12.4. Органикалық наноматериал негізіндегі тарататын құралдар
- •12.4.1. Жалпы мағлұматтар
- •12.4.2. Органикалық жарық диодтары
- •12.4.3. Органикалық жарық диодтарын алу технологиясы
- •12.4.4. Oled-дисплейде түрлі-түсті кескінді алу
- •12.4.5. Amoled транзисторлары орнына mems-кілттерін пайдалану
- •12.4.6. Органикалық жарық диодтары негізінде қондырғылар мен жүйелерді жасақтау жағдайы
- •12.5. Көміртекті талшықтар автоэмиссиясы негізіндегі жарық көздері
- •12.5.1. Жалпы мағлұматтар
- •12.5.2. Автоэлектронды эмиттерлі катодолюминесцентті дисплейлер
- •12.6. Фотоқабылдағыш наноэлектрондық құралдар
- •12.6.1. Квантты шұңқырлардағы фотоқабылдағыштар
- •12.6.2. Кванттық нүктелер негізіндегі фотоқабылдағыштар
- •12.32 Сурет. Фотоқабылдағыш құрылысы мен диодтың энергетикалық диаграммасы.
- •12.7. Кең қолданылатын фотоматрицалар
- •12.7.1. Жалпы мағлұмат
- •12.7.2. Матрицалар сипаттамасы
- •12.7.3. Қолдану технологиясы бойынша матрица түрлері
- •12.7.4. Фотоматрицаларда түрлі-түсті кескіндерді алу әдістері
- •12.8. Тізбекті жаймалы ұялы құрылғыларға арналған лазерлік микропроектор
- •12.9. Квантты нанотехнология және оның өнімі
- •12.9.1. Жалпы мағлұматтар
- •12.9.2. Кванттық компьютерлерді жасақтау
- •12.36 Сурет. Кк жұмысының структуралық схемасы
- •12.9.3. Кванттық криптография жоспарлары
4.6 Сурет спектральді диапазон және максималды фотосезгіш шалаөткізгіш материал структурасы
4.5 суреттегі қисықтың майысуы(перегиб) тыйым салынған зона шамасына тәуелді және қызыл светодиод үшін кернеудің тқұлауы аз шамаға ие. 4.5 суретке сәйкес қызыл түсті светодиодтың динамикалық кедергісі 1...2 Ом, ал қысқа толқынды таралуы 7...15 Ом тең.
p-n өткеліндегі тоқ тығыздығының өсумен электрондар мен кемтіктердің көп саны тыйым салынған зонада инжекцияланады. Олардың қозғалуынан қайталанып қозғалу эффектісі электрондар мен кемтіктердің рекомбинациялық таралуын тудырады. Нәтижесінде светодиодтың жарықтану эффектісі өседі. 4.6 суретте жарық тасқынның тәуелділігінің қозуы кейбір светодиод материалдары үшін көрсетілген. GaP-светодиоды аз тығыздықта сәулеленетіндігін айта кету керек, бірақ олардың сәулеленуі басқа материалды светодиодтармен салыстырғанда қанығуы төмен тығыздықтағы тоқ шамасында жетеді.
4.2.4
Светодиодтың қозу схемасы мен жоарғы жарық эффкетивтілігімен қамтамасыздандыру(обепечивание)
4 .6 суретте GaAs60P40 үшін қисығының тоқтың еселеніп (удвоение)қозуы жарық тасқының екі есе өсуі көрсетілген.
4.7 Сурет мезгілдік диаграмма
Бұл жарық эффективтілігінің өсуі осындай светодиод тоқтарының үлкен шамада қозуы мен импульсті схемалық қозуы статистикалық түріне ұарағанда үлкен сәулеленуге ие болатынын көрсетеді. Осындай әдіспен алынған жоғарғы жарықтану эффективтілігі сандық мысалмен сипатталып, қызыл GaAsP-светодиод импульсті сипаттамадағы қоздырушы тоғына жатады. 4.7а сурет
4.7 б суретте көріп отырғанымыздай 10мА тұрақты тоқта қозуының жарық тасқыны 0,7 млм дей болса, импульсті қозуда орта шамамен 2,0 млм.
Үлкен шамадағы тоқтың қозуы мен импульстің толтыру коэффициенті температураның ауысуына әсерін тигізеді. Осы құбылыстардың пайда болуы келесі тарауда қарастырылады. Егер жарықдиодтары 30 Гц асатын импульті жиілікпен қозатын болса, онда жарық(мелькание), басқа да жарықтар мен адам көзіне көрінетін құбылыстар байқалмайды.
4.2.5
Температураның СИД параметріне ықпалы(влияние)
Температура өскен сайын жарықдиодындағы кернеу мәні түсіп, сәйкесінше коэффициент 1,3-...-2,5мВ/ 0С шамасын құрайды. Толқын ұзындығы температураның максималды интенсивтілікті сәулеленуімен өсіп, коэффициенті 0,2 нм/0С шамасына жақын, ал кейде жарық диод материалына сәйкес аз болады. Сонымен қатар, жарық диодының сәулеленуі температура өскен сайын азайып, кері температура коэффициенті 1% / 0С тең болады.
4.2.6
СИД қызметінің мерзімі (СРОК СЛУЖБЫ СИД)
Светодиод қатты дене приборлар қатарына жатқандықтан, оның қызмет ету уақыты ұзақ болуы керек. Бірақ табиғи баяу диффузиялық ШӨ кристалдық байланыс басқа материалдармен қосылғанда, түсініксіз бір себептерге байланысты , уақыт өтуіне байланысты жарық тасқыны азая түседі.
Жұмыс істеу мерзіміне жасалған тәжірибелерден (4.7 сурет) біз үлкен тоқ шамасында жарық тасқынының аз болуын байқаймыз, бірақ ол 10% тіпті 1000 ч жұмысынан кейін үздіксіз жарықдиод шамасы аз болады.
Әдетте жарықдиодтардың жумыс істеу уақыты уақытпен анықталады, жумыс істеу уақыты өте келе жарық тасқыны бастапқы шамаға қарағанда 50% азаяды. Қалыпты жұмыс істеу шарттарында көрінетін жарық шығаратын жарық диодтардың жұмыс істеу уақыты 100 000 сағ(11 жыл) тең. Дегритациялау жұмысының жылдамдығы да таңдалған жұмыс тоғына тәуелді болады, оның азаюы дегритацияны азайтып қызмет ету уақытын көбейтеді.
4.2.7
СИД тоғын шектеу(ОГРАНИЧЕНИЕ ТОКА СИД)
Қисық Iпр ның Uпр тәуелділігі 4.8 суретте көрсетілген, мұндағы Iпр белгілі мәніне жеткеннен кейін Uпр құлау кернеуі күрт өсе бастайды. Тізбектегі тоқтың мәнін шектеу үшін резисторды қосу керек.(4,3 сурет)
Тоқтағы Iпр. max жарықдиодының қанығуы берілген шарттар қамтамасыздандырады.
Резистордағы кедергі мына формуламен анықталады:
(4,1)
-
қорек кернеуі.
Бұл өрнек светодиоттар барлық түрлері үшін қолданылады.
Егер
де светодиоттар бір тұрақты қорек
көзінің тізбек бойында паралельді
орналасса, онда
бастапқы кернеуі бар прибор ең көп тоқ
көзіне ие болып отырады, нәтижесінде
оның жарық тасқыны басқа светодиодтардың
жарық тасқындарын арттырып отырады.
Эмиттерлік ережеге негізделе отырып келесілерді бағдарлауға болады: жарық күші 4...5 мкм, ол бөлмедегі қатты жарықтанған светодиодтардың жарқырауын ажыратуға көмектеседі (жарықану 1000 лк). Көрінетін диапазондағы аса жоарғы қызыл сәуленің таралуы үшін I~ 10 мА тоқ қажет,ал басқа түстер үшін I~ 20 мА.