
- •Тема 1. Предмет, метод и задачи ЭконометрикИ 6
- •Тема 2. Линейные однофакторные регрессионные
- •Тема 3. Линейная модель множественной
- •Тема 4. Нелинейные модели регрессии и их
- •Тема 5. Оценка качества эконометрических
- •Тема 6. Временные ряды 112
- •Тема 7. Задачи экономического анализа, решаемые на основе эконометрических моделей 135
- •Тема 8. Системы эконометрических уравнений 167
- •Введение
- •1.2. Соотношения между экономическими переменными.
- •Регрессионные модели как инструмент анализа и прогнозирования экономических явлений.
- •Практический блок
- •Самостоятельная работа студентов Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Интернет-ресурсы:
- •Тема 2. Линейные однофакторные регрессионные модели эконометрики
- •2.1. Определения. Линейная регрессионная модель для случая одной факторной переменной
- •Метод наименьших квадратов (мнк).
- •2.3. Свойства оценок мнк.
- •2.4.Регрессия по эмпирическим (выборочным) данным и теоретическая регрессия.
- •Таким образом, получено уравнение регрессии
- •2.5. Экономическая интерпретация параметров линейного уравнения регрессии.
- •2.6. Измерение и интерпретация случайной составляющей.
- •Практический блок Примеры
- •Контрольные вопросы
- •Задания и задачи
- •Самостоятельная работа студентов Литература для самостоятельной работы
- •Тема 3. Линейная модель множественной регрессии
- •3.1. Отбор факторов при построении множественной регрессии.
- •3.2. Линейная регрессионная модель со многими переменными.
- •3.3. Оценка и интерпретация параметров.
- •3.4. Описание связей между макроэкономическими переменными.
- •3.5. Формирование регрессионных моделей на компьютере с помощью ппп Excel
- •3.5.1. Однофакторная регрессия.
- •3.5.2. Многофакторная регрессия.
- •Практический блок Примеры
- •Контрольные вопросы
- •Задания и задачи
- •Самостоятельная работа студентов Литература для самостоятельной работы
- •Тема 4. Нелинейные модели регрессии и их линеаризация
- •4.1. Общие понятия
- •4.2. Мультипликативные модели регрессии и их линеаризация.
- •4.3. Гиперболическая и логарифмическая регрессии. Полиномиальная и кусочно-полиномиальная регрессия.
- •4.4. Экспоненциальная и степенная однофакторная регрессии.
- •Формирование нелинейных однофакторных регрессионных моделей на компьютере с помощью ппп Excel
- •Практический блок Пример
- •Контрольные вопросы
- •Задания и задачи
- •Самостоятельная работа студентов Литература для самостоятельной работы
- •5.1. Доверительные интервалы для коэффициентов: реальные статистические данные
- •5.2. Проверка статистических гипотез о значениях коэффициентов
- •5.3. Проверка значимости параметров линейной регрессии и подбор модели с использованием f-критериев
- •5.4. Проверка значимости и подбор модели с использованием коэффициентов детерминации. Информационные критерии
- •Линейные регрессионные модели с гетероскедастичными и автокоррелированными остатками.
- •5.6. Обобщенный метод наименьших квадратов. Метод Главных Компонент.
- •5.7.Прогнозирование. Доверительный интервал прогноза.
- •Практический блок
- •Контрольные вопросы
- •Задания и задачи
- •3. Имеются данные о рынке строящегося жилья в Санкт-Петербурге (по состоянию на декабрь 2006 г.).
- •Самостоятельная работа студентов Литература для самостоятельной работы
- •6 . Временные ряды.
- •6.1. Характеристики временных рядов. Выявление тренда в динамических рядах экономических показателей.
- •Моделирование сезонных и циклических колебаний.
- •6.3. Статистика Дарбина-Уотсона.
- •6.4. Динамические эконометрические модели
- •6.5. Интерпретация параметров моделей с распределенным лагом
- •Практический блок Пример.
- •Задания и задачи
- •Самостоятельная работа студентов Литература для самостоятельной работы
- •7.Задачи экономического анализа, решаемые на основе регрессионных эконометрических моделей
- •7.1. Измерение тесноты связи между результативным и факторными признаками.
- •Анализ влияния отдельных факторных признаков на результативный признак.
- •Практический блок Пример
- •Контрольные вопросы
- •Самостоятельная работа студентов Литература для самостоятельной работы
- •8. Системы эконометрических уравнений.
- •8.1. Структура систем эконометрических уравнений
- •8.2. Проблема идентификации
- •Методы решения систем эконометрических уравнений
- •Практический блок
- •Самостоятельная работа студентов Литература для самостоятельной работы
- •Методические рекомендации
- •1. Методические рекомендации по изучению теоретического материала.
- •2. Методические рекомендации по решению практических задач.
- •3. Методические рекомендации по выполнению контрольных работ.
- •4. Требования к критериям оценки выполнения практических заданий, контрольных работ.
- •Вопросы для подготовки к зачету
- •Контрольные задания
- •Глоссарий
- •Список рекомендуемой литературы
- •Предметный указатель
- •Приложения
8.2. Проблема идентификации
При переходе от приведенной формы модели к структурной исследователь сталкивается с проблемой идентификации. Идентификация – это единственность соответствия между приведенной и структурной формами модели.
С позиции идентифицируемости структурные модели можно подразделить на три вида:
– идентифицируемые;
– неидентифицируемые;
– сверхидентифицируемые.
Модель идентифицируема, если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной формы модели, т. е. если число параметров структурной модели равно числу параметров приведенной формы модели. В этом случае структурные коэффициенты модели оцениваются через параметры приведенной формы модели и модель идентифицируема. Модель неидентифицируема, если число приведенных коэффициентов меньше числа структурных коэффициентов, и в результате структурные коэффициенты не могут быть оценены через коэффициенты приведенной формы модели.
Модель сверхидентифицируема, если число приведенных коэффициентов больше числа структурных коэффициентов. В этом случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. В этой модели число структурных коэффициентов меньше числа коэффициентов приведенной формы.
Сверхидентифицируемая модель, в отличие от неидентифицируемой, модели практически решаема, но требует для этого специальных методов исчисления параметров.
Структурная модель всегда представляет собой систему совместных уравнений, каждое из которых требуется проверять на идентификацию. Модель считается идентифицируемой, если каждое уравнение системы идентифицируемо. Если хотя бы одно из уравнений системы неидентифицируемо, то и вся модель считается неидентифицируемой. Сверхидентифицируемая модель содержит хотя бы одно сверхидентифицируемое уравнение.
Выполнение условия идентифицируемости модели проверяется для каждого уравнения системы. Чтобы уравнение было идентифицируемо, необходимо, чтобы число предопределенных переменных, отсутствующих в данном уравнении, но присутствующих в системе, было равно числу эндогенных переменных в данном уравнении без одного.
Обозначим через H – число эндогенных переменных в уравнении, а через D – число предопределенных переменных, отсутствующих в уравнении, но присутствующих в системе. Тогда необходимое условие идентификации отдельного уравнения принимает вид:
– уравнение идентифицируемо, если D + 1 = H;
– уравнение неидентифицируемо, если D + 1 < H;
– уравнение сверхидентифицируемо, если D + 1 > Н.
Если необходимое условие выполнено, то далее проверяется достаточное условие идентификации.
Достаточное условие идентификации. Уравнение идентифицируемо, если определитель матрицы, составленной из коэффициентов при переменных, отсутствующих в исследуемом уравнении, не равен нулю, и ранг этой матрицы не менее числа эндогенных переменных системы без единицы.