Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК-эконометрика-магистры.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
5.73 Mб
Скачать

5.7.Прогнозирование. Доверительный интервал прогноза.

Расчеты и проверка достоверности полученных оценок коэффициентов регрессии не являются самоцелью, это лишь необходимый промежуточный этап. Основное – это использование модели для анализа и прогноза поведения изучаемого экономического явления. Прогноз осуществляется подстановкой значения фактора х в полученную формулу регрессии.

Используем полученное в примере 1 уравнение регрессии для прогноза объема товарооборота. Пусть намечается открытие магазина с численностью работников х=140 чел., тогда достаточно обоснованный объем товарооборота следует установить по уравнению ŷ(х)= –0,974 + 0,01924140=1,72 млрд. руб.

Доверительный интервал для прогностического значения у(х)= 0+1х определяется по формуле

, (16)

где tp – критическая граница распределения Стьюдента с n – 2 степенями свободы, соответствующая уровню значимости р. Для получения доверительного интервала воспользуемся выражением (16).

Выберем уровень значимости 5%. Число степеней свободы у нас 8 – 2 = 6, тогда по таблице распределения Стьюдента (приложение 1) находим

t0.05(6)=2,447.

= 0,008=0,089,

следовательно, с вероятностью 95% истинные значения объемов товарооборота будут лежать в пределах

1,72 – 2,4470,048<y(x)<1,72+2,4470,048, или 1,60<y(x)<1,84.

6 . Временные ряды.

6.1. Характеристики временных рядов. Выявление тренда в динамических рядах экономических показателей.

Методы математической статистики широко применяются для анализа экономических временных рядов.

В общем случае временной ряд содержит детерминированную и случайную составляющие:

уt=f(t,хt)+t, t=1,…,Т,

г де уt – значения временного ряда; f(t,хt) – детерминированная составляющая; хt – значения факторов, влияющих на детерминированную составляющую в момент t; t – случайная составляющая; Т – длина ряда.

Получив оценки детерминированной и случайной составляющих, решают задачи прогноза будущих значений, как самого временного ряда, так и его составляющих.

Если детерминированная составляющая зависит только от времени и линейна относительно своих параметров, то задача сводится к задаче множественной линейной регрессии, рассмотренной выше.

Действительно, в этом случае

уt=0+1 1(t) +2 2(t) +…+m m( t)+t, t=1,…,Т. (28)

В частном случае,

уt=0+1t1 +2t2 +…+mtm + t, t=1,…,Т. (29)

Детерминированная составляющая в свою очередь представляется тремя составляющими.

Долговременная эволюторно изменяющаяся составляющая является результатом действия факторов, приводящих к постепенному изменению экономического показателя. Так, в результате научно-технического прогресса, совершенствования системы управления производством показатели эффективности производства растут, а удельные расходы на единицу полезного эффекта снижаются.

Долговременная циклическая составляющая проявляется на протяжении длительного времени в результате действия факторов, обладающих большим последействием или циклически изменяющихся во времени. Например, кризисы перепроизводства или периодичность солнечной активности, влияющая на урожайность.

Сезонная циклическая составляющая легко просматривается в колебаниях продуктивности сельскохозяйственных животных, а также в колебаниях розничного товарооборота в зависимости от времени года.

Многие исследователи первую составляющую называют трендом, другие трендом называют все три составляющие.

Эволюторно изменяющуюся долговременную составляющую во многих практических случаях представляют в виде некоторой аналитической функции (см. ниже), тогда как долговременная и сезонная циклические составляющие представляются тригонометрическими трендами.

Для построения эволюторных трендов (моделирования тенденции) чаще всего применяются те же функции, которые мы рассматривали выше:

  • линейный тренд: ŷt=b+ at;

  • гипербола: ŷt= b+a/t;

  • экспоненциальный тренд: ŷt= е b+at (или ŷt=bat);

  • тренд в форме степенной функции ŷt= bta;

  • полином порядка m: ŷt= b + a1t + a2t2 +…+ amtm.

Параметры каждого из перечисленных выше трендов можно определить обычным МНК, используя в качестве независимой переменной время t. Для нелинейных трендов предварительно проводят процедуру их линеаризации.

Пример 6. Имеются помесячные данные о темпах роста заработной платы в РФ за 10 месяцев 2004 г. в процентах к уровню декабря 2003г. (табл. 10). Требуется выбрать наилучший тип тренда и определить его параметры.

Таблица 10

месяц

1

2

3

4

5

6

7

8

9

10

Темп роста з/платы

82,3

87,3

99,4

104,8

107,2

121,6

118,6

114,1

123,0

127,3

Определим параметры основных видов тренда. Результаты этих расчетов представлены в табл. 11.

Таблица 11

Тип тренда

уравнение

R2

Линейный

ŷt= 82,66 + 4,72t

0,887

Парабола

ŷt= 72,9 + 9,599t – 0,444t2

0,937

Степенной

lnŷt= 4,39 + 0,193lnt

0.939

Экспоненциальный

lnŷt= 4.43 + 0.045t

0.872

Гиперболический

ŷt= 122.57 – 47.63/t

0.758

Наилучшей является степенная форма тренда, которая в исходном виде (после потенцирования) примет следующий вид

ŷt= е4.39 t0,193

или ŷt= 80,32t0,193.

Наиболее простую экономическую интерпретацию имеют параметры линейного и экспоненциального трендов.

Параметры линейного тренда можно интерпретировать так:

b – начальный уровень временного ряда при t=0;

a – средний за период абсолютный прирост ряда.

Применительно к примеру 6 можно сказать, что темпы роста месячной заработной платы за 10 месяцев 2004г. изменялись от 82,66% со средним за месяц абсолютным приростом 4,72%.

Параметры экспоненциального тренда имеют следующую интерпретацию:

b – начальный уровень временного ряда при t=0;

еa– средний за период коэффициент роста ряда.

В примере 6 уравнение экспоненциального тренда в исходной форме имеет вид

ŷt= е4.43 е0,045t

или ŷt= 83,96е0,045t.

Следовательно, можно сказать, что темпы роста месячной заработной платы за 10 месяцев 2004г. изменялись от 83,96% со средним за месяц темпом роста, равным е0,045= 1,046.