
- •Федеральное агентство по образованию
- •Южно-уральский государственный университет
- •Факультет экономики и предпринимательства
- •Кафедра «предпринимательство и менеджмент»
- •Учебно-методический комплекс
- •Оглавление
- •Цель, задачи и содержание дисциплины
- •Календарно-тематический план работы студента
- •Рабочая программа
- •Ф едеральное агентство по образованию
- •Южно-уральский государственный университет
- •Факультет экономики и предпринимательства
- •Кафедра «предпринимательство и менеджмент»
- •Рабочая программа
- •1. Введение
- •2. Разделы дисциплины, виды и объем занятий
- •3. Требования к практическим видам занятий при освоении дисциплины
- •4. Рекомендуемая литература
- •Методические рекомендации
- •1. Методические рекомендации по изучению теоретического материала.
- •2. Методические рекомендации по решению практических задач.
- •3. Методические рекомендации по выполнению контрольных работ.
- •4. Требования к критериям оценки выполнения практических заданий, контрольных работ.
- •Краткий курс лекций
- •1. Предмет, метод и задачи курса «Эконометрика».
- •1.1. Соотношения между экономическими переменными.
- •Регрессионные модели как инструмент анализа и прогнозирования экономических явлений.
- •Линейные однофакторные регрессионные модели эконометрики.
- •2.1. Определения. Линейная регрессионная модель для случая одной факторной переменной.
- •Метод наименьших квадратов (мнк).
- •2.3. Свойства оценок мнк.
- •2.4.Регрессия по эмпирическим (выборочным) данным и теоретическая регрессия.
- •Таким образом, получено уравнение регрессии
- •2.5. Экономическая интерпретация параметров линейного уравнения регрессии.
- •2.6. Измерение и интерпретация случайной составляющей.
- •3. Линейная модель множественной регрессии
- •3.1. Обоснование и отбор факторов при построении множественной регрессии.
- •3.2. Линейная регрессионная модель со многими переменными.
- •3.3. Оценка и интерпретация параметров.
- •3.4. Описание связей между макроэкономическими переменными.
- •3.5. Формирование регрессионных моделей на компьютере с помощью ппп Excel
- •3.5.1. Однофакторная регрессия.
- •3.5.2. Многофакторная регрессия.
- •4. Нелинейные модели регрессии и их линеаризация
- •4.1. Мультипликативные модели регрессии и их линеаризация.
- •4.2. Гиперболическая и логарифмическая регрессии. Полиномиальная и кусочно-полиномиальная регрессия.
- •4.3. Экспоненциальная и степенная регрессии.
- •5.1. Доверительные интервалы для коэффициентов: реальные статистические данные
- •5.2. Проверка статистических гипотез о значениях коэффициентов
- •5.3. Проверка значимости параметров линейной регрессии и подбор модели с использованием f-критериев
- •5.4. Проверка значимости и подбор модели с использованием коэффициентов детерминации. Информационные критерии
- •Линейные регрессионные модели с гетероскедастичными и автокоррелированными остатками.
- •5.6. Обобщенный метод наименьших квадратов. Метод Главных Компонент.
- •5.7.Прогнозирование. Доверительный интервал прогноза.
- •6 . Временные ряды.
- •6.1. Характеристики временных рядов. Выявление тренда в динамических рядах экономических показателей.
- •Моделирование сезонных и циклических колебаний.
- •6.3. Статистика Дарбина-Уотсона.
- •7.Задачи экономического анализа, решаемые на основе регрессионных эконометрических моделей
- •7.1. Измерение тесноты связи между результативным и факторными признаками.
- •Анализ влияния отдельных факторных признаков на результативный признак.
- •Системы эконометрических уравнений.
- •18. Имеются данные о рынке строящегося жилья в Санкт-Петербурге (по состоянию на декабрь 2006 г.).
- •Вопросы к экзамену(зачету) по дисциплине «Эконометрика».
- •Контрольные задания по дисциплине «Эконометрика».
- •Рекомендуемая литература
3.5. Формирование регрессионных моделей на компьютере с помощью ппп Excel
3.5.1. Однофакторная регрессия.
Статистическая функция ЛИНЕЙН определяет параметры линейной регрессии у=ах+b. Порядок вычисления следующий:
1) введите исходные данные или откройте существующий файл, содержащий анализируемые данные;
2) выделите область пустых ячеек 52 (5 строк, 2 столбца) для вывода результатов регрессионной статистики или область 12 – для получения только оценок коэффициентов регрессии;
3) активизируйте Мастер функций любым из способов:
а) в главном меню выберите Вставка/Функция;
б) на панели инструментов Стандартная щелкните по кнопке Вставка функции;
4) в окне Категория выберите Статистические, в окне Функция – ЛИНЕЙН. Щелкните по кнопке ОК;
5) заполните аргументы функции:
Известные_значения_у – диапазон, содержащий данные результативного признака;
Известные_значения_х – диапазон, содержащий данные факторов независимого признака;
Константа - логическое значение, которое указывает на наличие или на отсутствие свободного члена в уравнении; если Константа = 1, то свободный член рассчитывается обычным образом, если Константа = 0, то свободный член равен 0;
Статистика – логическое значение, которое указывает, выводить дополнительную информацию по регрессионному анализу или нет. Если Статистика = 1, то дополнительная информация выводится, если Статистика = 0, то выводятся только оценки параметров уравнения.
Щелкните по кнопке ОК;
6) в левой верхней ячейке выделенной области появится первый элемент итоговой таблицы. Чтобы раскрыть всю таблицу, нажмите клавишу <F2>, а затем – на комбинацию клавиш <CTRL>+<SHIFT>+<ENTER>.
Регрессионная статистика представляется в выделенной области в следующем порядке:
Значение коэффициента a |
Значение коэффициента b |
Среднеквадратическое отклонение a |
Среднеквадратическое отклонение b |
Коэффициент детерминации R2 |
Среднеквадратическое отклонение y |
F-статистика |
Число степеней свободы |
Регрессионная сумма квадратов |
Остаточная сумма квадратов |
3.5.2. Многофакторная регрессия.
Построение линейной многофакторной модели производится с помощью инструментов пакета анализа данных Корреляция и Регрессия. Корреляция используется для расчета матрицы парных коэффициентов корреляции. С помощью Регрессии, помимо результатов регрессионной статистики, дисперсионного анализа и доверительных интервалов, можно получить остатки и графики подбора линии регрессии, остатков и нормальной вероятности. Порядок действий следующий:
проверьте доступ к пакету анализа. Пакет анализа представляет собой программу, которая доступна при установке Microsoft Office или Excel. Чтобы использовать надстройку в Excel, необходимо сначала загрузить ее. Для версии 2003 в главном меню последовательно выберите Сервис/Надстройки. Установите флажок Пакет анализа, а затем нажмите кнопку ОК.
Для
версии 2007 щелкните значок Кнопка
Microsoft Office
,
а затем щелкните Параметры
Excel.
Выберите команду
Надстройки
и в окне Управление
выберите пункт Надстройки
Excel. Нажмите
кнопку Перейти.
В окне Доступные
надстройки
установите флажок Пакет
анализа, а
затем нажмите кнопку ОК.
Совет. Если
Пакет анализа
отсутствует в списке поля Доступные
надстройки,
то для проведения поиска нажмите кнопку
Обзор.
В случае появления сообщения о том, что пакет статистического анализа не установлен на компьютере и предложения установить его, нажмите кнопку Да.
после загрузки пакета анализа в версии 2003 команда Анализ данных становится доступной в пункте Сервис, а в версии 2007 в группе Анализ на вкладке Данные.
введите исходные данные или откройте существующий файл, содержащий анализируемые данные;
в меню Анализ данных выберите пункт Корреляция;
заполните диалоговое окно входных данных и параметров вывода:
Входной интервал – диапазон, содержащий анализируемые данные (все столбцы или строки);
Группирование – по столбцам или по строкам;
Метки – флажок, который указывает, содержит ли первая строка названия столбцов или нет;
Выходной интервал – достаточно указать левую верхнюю ячейку диапазона;
результаты вычислений – матрица парных коэффициентов корреляции, анализ которых позволяет выполнить первый этап процесса моделирования, описанный в 2.4;
в меню Анализ данных выберите пункт Регрессия;
заполните диалоговое окно входных данных и параметров вывода как в пункте 5, только интервал для результативного признака Y и для факторов Х надо задавать отдельно (причем входной интервал Х должен включать все столбцы, содержащие значения факторных признаков);
в результате получаем регрессионную статистику, таблицу дисперсионного анализа и таблицу коэффициентов модели, в которой первая строка (Y-пересечение) соответствует коэффициенту а0, а следующие строки описывают коэффициенты регрессии аi.