
- •Часть 1.
- •Глава I
- •§ 1. Геолого-геофизические условия проведения каротажа
- •§ 1. Геолого-геофизические условия проведения каротажа
- •Изменение диаметра скважины
- •Проникновение фильтрата пж в пласт
- •2. Каротаж потенциалов самопроизвольной поляризации
- •§ 2. Каротаж потенциалов самопроизвольной поляризации
- •Диффузионно-адсорбционные потенциалы. Диффузия
- •Диффузия и адсорбция
- •Фильтрационные потенциалы
- •Суммарные потенциалы Епс в скважине
- •Влияние мощности пласта и диаметра скважины
- •Влияние удельного сопротивления пласта, промывочной жидкости и вмещающих пород.
- •Влияние глинистости
- •Основные факторы, влияющие на форму и амплитуду отклонения кривой пс
- •Кривая пс против пород различной литологии
- •Определение удельного сопротивления и минерализации пластовых вод по кривой пс
- •Применение кривых пс
- •§ 3. Удельное сопротивление водных растворов и горных пород
- •Удельное сопротивление водных растворов солей
- •Удельное сопротивление чистых неглинистых пород гранулярного строения
- •Удельное сопротивление песчано-глинистых пород
- •Удельное сопротивление трещиноватых и кавернозных пород
- •Удельное сопротивление нефтегазоносных пород
- •Влияние всестороннего давления на величину удельного сопротивления пород
- •Глава iiосновные способы измерения кажущегося удельного сопротивления горных пород и определение их истинного удельного сопротивления (каротаж сопротивления)
- •§ 4. Каротаж обычными зондами
- •Кривые сопротивления против пластов конечной мощности. Форма кривых.
- •Боковое каротажное зондирование
- •Кажущееся удельное сопротивление пласта неограниченной мощности (палетки бкз)
- •Обработка материалов бкз
- •Применение электрического каротажа обычными зондами и выбор стандартного зонда
- •§ 5. Боковой каротаж
- •Многоэлектродные боковые каротажные зонды
- •Кривые кажущегося сопротивления бк против пластов конечной мощности. Форма кривых.
- •Влияние зоны проникновения
- •Обработка и интерпретация кривых бк
- •Трехэлектродный бк
- •Комплексные зонды бк
- •Применение бокового каротажа
- •§ 6. Измерение кажущегося удельного сопротивления микроустановками
- •Микрокаротаж
- •Боковой микрокаротаж
- •Интерпретация кривых, полученных микрокаротажем
- •Интерпретация диаграмм бмк
- •Измерение удельного сопротивления пж
- •§ 7. Индукционный каротаж
- •Физические основы индукционного каротажа
- •Кажущаяся электрическая проводимость и форма кривой
- •Форма кривой и определение границ при ик
- •Обработка и интерпретация данных индукционного каротажа
- •Применение индукционного каротажа
- •§ 8. Универсальные способы интерпретации кривых сопротивления
- •§ 8. Универсальные способы интерпретации кривых сопротивления
- •Изорезистивная методика интерпретации кривых сопротивлений
- •Глава III. Диэлектрический каротаж
- •§ 9. Диэлектрическая проницаемость горных пород и принцип ее измерения
- •§ 10. Волновой диэлектрический каротаж
- •Влияние скважины
- •Интерпретация данных вдк
- •Применение диэлектрического каротажа
- •Глава IV. Радиоактивный каротаж
- •§ 11. Гамма-каротаж. Физические основы.
- •Интерпретация данных гамма-каротажа
- •§ 12. Спектральный гамма-каротаж
- •§ 13. Гамма-гамма-каротаж. Физические основы.
- •Плотностной гамма-гамма каротаж
- •Селективный гамма-гамма каротаж
- •§ 14. Нейтронный каротаж
- •Нейтронный гамма-каротаж
- •Нейтрон-нейтронный каротаж по тепловым и надтепловым нейтронам
- •Многозондовый нейтрон-нетронный каротаж
- •§ 15. Импульсный нейтронный каротаж
- •Импульсный нейтрон-нейтронный каротаж
- •Импульсный нейтронный гамма-каротаж
- •Влияние скважины на показания инк
- •Глубинность исследований методом инк
- •Применение инк
- •§ 16. Форма кривой при радиоактивном каротаже
- •Глава V. Акустический каротаж
- •§ 17. Физические основы
- •Распространение упругих волн в скважине
- •Каротажные зонды
- •§ 18. Акустический каротаж по скорости
- •§ 19. Акустический каротаж по затуханию
- •Форма кривой при акустическом каротаже и определение границ пластов
- •Выбор оптимальной длины зонда ак
- •Глава VI ядерно-магнитный каротаж
- •§ 20. Физические основы
- •§ 21. Интерпретация диаграмм ямк
- •Выделение коллекторов
- •Определение характера насыщения пород
- •Глава VII. Термометрия скважин
- •§ 22. Метод естественного теплового поля земли (геотермия)
- •§ 23. Методы изучения местных тепловых полей
- •Глава VIII другие виды каротажа
- •§ 24. Кавернометрия и профилеметрия
- •§ 25. Выявление зон аномально высокого давления и оценка давления
- •§ 25. Выявление зон аномально высокого давления и оценка давления
- •§ 26. Определение падения пластов (наклонометрия)
- •§ 27. Опробование пластов в процессе бурения приборами на каротажном кабеле и испытателями пластов на трубах
- •Опробование пластов приборами на каротажном кабеле
- •Оценка характера насыщенности пластов по данным опк
- •Опробование скважин испытателями пластов на трубах
- •Глава IX. Геохимические и геолого-технологические методы исследования скважин
- •§ 28. Газовый каротаж в процессе бурения
- •Основные технологические параметры, измеряемые при газовом каротаже
- •Параметры, характеризующие газо- и нефтесодержание пластов
- •Компонентный газовый анализ
- •Определение глубин
- •§ 29. Газовый каротаж после бурения
- •§ 30. Интерпретация данных газового каротажа
- •§ 30. Интерпретация данных газового каротажа
- •Прогнозная оценка характера насыщения пластов по данным газового каротажа и гис
- •§ 31. Геолого-технологическая информация в процессе бурения
- •Выделение продуктивных пластов
- •Прогнозирование зон аномально высоких пластовых давлений
- •Получение технологической информации
- •Применение геохимических и геолого-технологических методов исследования скважин
- •Глава X
- •§ 32. Изучение литологии и последовательности залегания пластов
- •Локальные кореляционные схемы
- •Региональная кореляция
- •Составление типового, нормального и сводного геолого-геофизического разрезов
- •§ 33. Геологические построения
- •§ 34. Коллекторы нефти и газа и принципы их выделения по данным гис
- •§ 35. Выделение терригенных коллекторов
- •36. Выделение карбонатных коллекторов
- •§ 36. Выделение карбонатных коллекторов
- •Высокопористые (поровые) коллекторы
- •Малопористые (трещиновато-каверновые) коллекторы
- •Смешанные (трещинно-каверново-поровые) коллекторы
- •Повторные измерения в скважине. Временные изменения.
- •Методика двух жидкостей
- •Каротаж-испытание-каротаж (кик)
- •§ 37. Определение глинистости коллекторов
- •§ 37. Определение глинистости коллекторов
- •Гамма-каротаж
- •Каротаж пс
- •§ 38. Определение пористости по данным электрического каротажа
- •§ 38. Определение пористости по данным электрического каротажа
- •§ 39. Определение пористости по данным радиоактивного каротажа
- •§ 39. Определение пористости по данным радиоактивного каротажа
- •Нейтронный каротаж
- •Однозондовый нк
- •Двухзондовый 2ннкт
- •Интерпретация кривых нгк и ннк способами опорного пласта
- •§ 40. Определение пористости пород по данным акустического каротажа
- •§ 40. Определение пористости пород по данным акустического каротажа
- •41. Комплексная интерпретация результатов каротажа
- •§ 41. Комплексная интерпретация результатов каротажа
- •41. Комплексная интерпретация результатов каротажа
- •§ 41. Комплексная интерпретация результатов каротажа
- •Определение пористости и глинистости терригенных пород
- •Определение фракционного состава песчано-алевритовых пород по данным рк
- •Способы оценки пористости пород с учетом их литологии
- •Определение пористости и литологии путем решения системы уравнений
- •Оценка литологии пород по комплексу геофизических данных
- •Графический способ оценки пористости глинистых коллекторов
- •§ 42. Оценка пористости карбонатных пород по комплексу методов сопротивления и нейтронного гамма-каротажа
- •§ 42. Оценка пористости карбонатных пород по комплексу методов сопротивления и нейтронного гамма-каротажа
- •Способ нормализации
- •Глава XIII
- •§ 43. Определение коэффициента нефтегазонасыщенности
- •§ 43. Определение коэффициента нефтегазонасыщенности
- •Глинистый коллектор с межзерновой пористостью
- •Универсальная методика оценки нефтегазонасыщенности песчано-глинистых коллекторов
- •Оценка пористости и нефтегазонасыщености песчано-глинистых коллекторов по данным удельного сопротивления и пс
- •Песчано-глинистые породы с рассеянным глинистым материалом
- •Оценка промышленной нефтегазоносности пласта
- •Погрешности определения пористости и нефтегазонасыщенности пород по удельному сопротивлению
- •§ 44. Разделение нефтеносных и газоносных пластов
- •§ 45. Выделение переходной зоны
- •§ 45. Выделение переходной зоны
- •46. Оценка проницаемости пород
- •§ 46. Оценка проницаемости пород
- •Оценка проницаемости по удельному сопротивлению
- •Оценка проницаемости по градиенту удельного сопротивления
- •Гидродинамический каротаж
- •Глава XIV Методы контроля разработки нефтяных и газовых месторождений
- •Глава XIV
- •§ 47. Использование данных термометрии при контроле разработки залежи
- •§ 47. Использование данных термометрии при контроле разработки залежи
- •§ 48. Определение положения водонефтяного и газожидкостного контактов и контроль обводнения скважин
- •§ 48. Определение положения водонефтяного и газожидкостного контактов и контроль обводнения скважин
- •§ 49. Расходометрия скважин
- •§ 49. Расходометрия скважин
- •§ 50. Исследование состава флюидов в стволе скважины
- •§ 50. Исследование состава флюидов в стволе скважины
- •Глава XV Автоматизированная обработка и интерпретация результатов геофизических исследований скважин
- •Глава XV
- •§ 51. Схемы автоматизированной обработки и интерпретации данных гис
- •§ 51. Схемы автоматизированной обработки и интерпретации данных гис
- •§ 52. Сбор данных гис в цифровой форме
- •§ 52. Сбор данных гис в цифровой форме
- •Регистрация данных гис
- •Первичная обработка данных гис
- •§ 53. Обработка и интерпретация данных гис
- •§ 54. Обоснование комплекса геофизических исследований скважин
- •§ 54. Обоснование комплекса геофизических исследований скважин
- •§ 55. Основные требования к качеству измерений при гис
- •§ 55. Основные требования к качеству измерений при гис
- •Список литературы
Изменение диаметра скважины
Диаметр скважины увеличивается (вследствие образования каверн) против пластов глин и пород, содержащих глинистый материал (мергели и глинистые известняки), в результате гидромониторного воздействия струи, вытекающей из долотных отверстий. Этот процесс протекает интенсивнее при использовании ПЖ с пониженной вязкостью, разжиженных, с повышенной водоотдачей. Интенсивность разрушения глин зависит также от их физико-химических свойств. Монтмориллонитовые тонкодисперсные коллоидные глины разрушаются более интенсивно, чем каолинитовые, песчанистые, известковые и грубо-дисперсные. В связи с этим диаметр скважины в глинах изменяется неравномерно.
При использовании ПЖ, приготовленных на соленой воде, образование каверн замедляется, так как при концентрированных растворах гидратация глинистых частиц уменьшается, а в некоторых случаях происходит обратный процесс — обезвоживание влажных глин.
Увеличение диаметра скважины против пластов соли и в малой степени против гипса связано с растворением этих пород водой глинистого раствора. Фактический диаметр скважины, против крепких пород (например, плотных песчаников, известняков, доломитов) без глинистого материала или против пород, содержащих его в небольшом количестве, обычно совпадает с номинальным (dc = dн).
В ряде случаев диаметр скважины увеличивается против трещиноватых пород из-за ослабления их механической прочности в процессе бурения.
Проникновение фильтрата пж в пласт
В разрезах нефтегазовых скважин наибольший интерес представляют пористые проницаемые пласты (коллекторы,) способные пропускать жидкость при наблюдаемых перепадах давления. Скорость проникновения фильтрата ПЖ в пласт снижается со временем и приблизительно через 250—300 ч становится сравнимой со скоростью диффузии солей.
Часть проницаемого пласта, в которую проник фильтрат промывочной жидкости, называют зоной проникновения. В этой зоне фильтрат смешан с пластовой водой, и удельное сопротивление пласта изменяется в радиальном направлении (рис. 2). С увеличением расстояния от стенки скважины объем фильтрата в единице объема породы постепенно уменьшается, и сопротивление зоны проникновения ρзп достигает сопротивления неизмененной части пласта ρп. Условно зону проникновения считают концентрическим слоем с эффективным диаметром D и постоянным сопротивлением ρзп . Допускается, что влияние эффективного диаметра зоны проникновения на результаты измерения сопротивления в неоднородной среде (зоне проникновения) эквивалентно влиянию фактического диаметра зоны проникновения.
Глубина проникновения фильтрата ПЖ зависит от проницаемости глинистой корки, пористости пласта, времени, прошедшего после вскрытия пласта (времени фильтрации). Пористость глинистой корки, проницаемость пласта и дифференциальное давление влияют незначительно. Наибольшая глубина проникновения характерна для проницаемых, но малопористых пород — известняков, доломитов, сцементированных алевролитов и песчаников. Породы с большим объемом пор обладают меньшей глубиной проникновения фильтрата ПЖ в пласт.
Скорость перемещения фронта зоны проникновения в высокопористом пласте со временем может настолько снизиться, что станет меньше скорости диффузии в зону проникновения ионов растворенных в пластовой воде солей. В результате граница между зоной проникновения и неизмененной частью пласта начнет перемещаться в обратном направлении — к скважине. Кроме того, в высокопористых пластах с хорошей проницаемостью по вертикали происходит перераспределение жидкости в зависимости от ее плотности. В результате высокоминерализованная пластовая вода может сохраниться в нижней части пласта, вытеснив более пресный и легкий фильтрат промывочной жидкости в верхнюю часть. По той же причине в нефтегазоносном пласте фильтрат распределяется по вертикали между нефтью и высокоминерализованной пластовой водой.
Рассмотрим различные случаи изменения удельного сопротивления пласта при проникновении в него фильтрата ПЖ.
Когда удельное электрическое сопротивление фильтрата ПЖ меньше сопротивления воды, насыщающей поры породы, либо когда фильтрат проникает в нефтегазонасыщенные пласты вследствие вытеснения им нефти или газа, происходит снижение удельного сопротивления. Такое проникновение называется понижающим.
При проникновении пресного фильтрата ПЖ в водоносные проницаемые пласты, насыщенные более минерализованной водой, происходит повышение удельного сопротивления пласта. Это проникновение называется повышающим.
Если насыщенность породы водой соответствует количеству остаточной воды, то фильтрат промывочной жидкости не способен вытеснить пластовую воду. Однако и в этом случае со временем в результате диффузии происходит смешение пластовой воды и фильтрата. Полученная смесь вытесняется последующей порцией фильтрата. В результате образуется промытая зона.
Промытая зона является частью зоны проникновения, расположенной непосредственно у стенки скважины. Через нее проходит наибольшее количество фильтрата, который почти полностью заменяет пластовую воду. Толщина промытой зоны достигает 5—10 см. Сопротивление промытой зоны ρпз водоносного пласта обычно определяется сопротивлением фильтрата ПЖ и пористостью пласта.
В промытой зоне нефтеносного пласта происходит замещение пластовой воды и нефти (газа) фильтратом ПЖ, но в тонких порах и тупиках коллектора нефть (газ) частично сохраняется. Принято считать, что в промытой зоне содержится 15—25% остаточной нефти. В глинистых коллекторах при высокой вязкости нефти остаточная нефтенасыщенность достигает 30 % и более. В газоносных пластах остаточная газонасыщенность всегда больше остаточной нефтенасыщенности даже в случае очень вязких нефтей. Остаточная газонасыщенность принимается равной 30 %. По мере удаления от стенок скважины фильтрат промывочной жидкости в зоне проникновения смешивается с все большими порциями пластовой воды и нефти.
В гидрофильном коллекторе на распределение флюида (нефти и воды) влияет также относительная (фазовая) проницаемость, что приводит к опережению движения нефти в глубь пласта по сравнению с движением воды. В результате между зонами проникновения и неизмененной частью пласта может образоваться окаймляющая (кольцевая) зона с повышенным содержанием воды, приближающейся по минерализации к пластовой воде. Сопротивление этой зоны ρоз значительно ниже ρзп . Формирование окаймляющей зоны возможно только в том случае, если насыщенность пласта водой несколько превышает остаточную водонасыщенность и в пласте имеется подвижная соленая вода. Наличие окаймляющей зоны в гидрофильных нефтеносных породах не может служить признаком промышленной нефтенасыщенности пласта. Она свидетельствует лишь о том, что в пласте имеется некоторое количество подвижной воды и скважина при эксплуатации может давать нефть с водой. Окаймляющая зона со временем обычно исчезает.
Описанная схема проникновения фильтрата ПЖ в пласт справедлива для чистых (неглинистых) песчаных пород. К ним относятся породы, в которых глинистый материал или отсутствует, или содержится в незначительном количестве, способном изменить физические свойства коллектора, свободного от глинистых частиц, не более чем на 5%. В песчано-глинистых коллекторах строение зоны проникновения более сложное. В результате взаимодействия фильтрата ПЖ с глинистыми частицами пористой проницаемой породы образуется зона пониженной проницаемости, препятствующая движению нефти и газа к скважине.
В ряде случаев бурение скважин проводится с применением промывочных жидкостей на нефтяной основе, которые разделяются на две основные группы: безводные ПЖ и водонефтяные инвертные эмульсии (ИЭ), В безводных ПЖ углеводородная жидкость является дисперсной средой, а окисленные битумы — дисперсной фазой. К ним относятся известково-битумные (ИБ), солярно-битумные (СБ), известково-солярно-битумные (ИСБ) и др. В ИЭ дисперсной средой является углеводородная жидкость, а дисперсной фазой — капельки минерализованной воды, содержание которой в 1,5—2 раза может повышать содержание нефти. Обе группы ПЖ обладают гидрофобностью, характеризуются высокими смазочными свойствами, разрушают резиновые элементы скважинных приборов и оборудования, практически не проводят электрический ток. Большинство ПЖ, приготовленных на нефтяной основе, способно также проникать в пласт-коллектор на большую глубину.
С применением ПЖ на нефтяной основе (согласно В. Г. Фоменко и А. В. Ручкина) решаются задачи:
— технологическая, направленная на облегчение бурения скважины в легкорастворимых или обваливающихся отложениях, когда использование ПЖ на водной основе не обеспечивает безаварийное бурение скважины:
— эксплуатационная, предусматривающая сохранение естественной проницаемости прискважинной части пласта с целью повышения эффективности вскрытия и освоения пластов с ухудшенными фильтрационными свойствами, сокращения сроков освоения скважин и увеличения времени их фонтанной эксплуатации;
— геологическая, целью которой является отбор образцов керна с сохранением естественной остаточной воды для определения начальной нефтегазонасыщенности продуктивных пластов.
Заполнение ствола скважины промывочной жидкостью, не проводящей электрический ток, ограничивает набор комплекса ГИС. В таких скважинах не могут выполняться каротаж сопротивления и каротаж потенциалов самопроизвольной поляризации. Для электромагнитного каротажа (индукционного и диэлектрического) ограничений при применении ПЖ на нефтяной основе нет. В тех случаях, когда кривые КС и ПС представляют значительный интерес для исследования скважины, замер этих параметров проводят после замены в скважине непроводящей ПЖ на ПЖ, проводящую электрический ток. В ряде случаев для получения дополнительной информации о коллекторских свойствах и насыщенности пласта после замены ПЖ повторно проводят широкий комплекс ГИС.