- •Раздел 1 Введение. Общие понятия измерительной техники
- •1.1. Общие сведения
- •Тема 1.1 Основные виды и методы измерений, их классификация
- •1.1.1 Виды измерений
- •1.1.2 Методы измерений
- •1.1.3 Средства измерений и их классификация
- •1.1.4 Элементарные средства измерений
- •1.1.5 Комплексные средства измерений
- •Контрольные вопросы:
- •Тема 1.2 Метрологические показатели средств измерений
- •1.2.1 Физические свойства и величины
- •1.2.2 Основные показатели
- •Контрольные вопросы:
- •Тема 1.3 Погрешности как характеристики средств измерений
- •1.3.1 Общие сведения
- •1.3.2 Классы точности средств измерений
- •1.3.3 Общие сведения об обработке результатов измерений
- •Контрольные вопросы:
- •Раздел 2 Измерение тока, напряжения, мощности
- •Тема 2.1
- •Измерение постоянного тока и напряжения электромеханическими измерительными приборами
- •2.1.1 Электромеханические приборы
- •Контрольные вопросы:
- •Тема 2.2 Выпрямительные и термоэлектрические приборы
- •2.2.1 Магнитоэлектрические приборы с преобразователями переменного тока в постоянный
- •2.2.2 Компенсаторы постоянного тока
- •Контрольные вопросы:
- •Тема 2.3 Аналоговые электронные вольтметры
- •2.3.1 Общие сведения
- •2.3.2 Техника измерения напряжения
- •2.3.3 Особенности измерения силы тока
- •2.3.4 Определение уровня переменного напряжения (тока)
- •2.3.5 Структурные схемы аналоговых вольтметров
- •Контрольные вопросы:
- •Тема 2.4 Цифровые вольтметры
- •2.4.1 Кодоимпульсные цифровые вольтметры
- •2.4.2 Вольтметры с времяимпульсным преобразованием
- •Из последних равенств получим
- •Контрольные вопросы:
- •Тема 2.5 Вольтметры импульсного напряжения
- •2.5.1 Измерения импульсных напряжений
- •2.5.2 Измерение шумового напряжения
- •Контрольные вопросы:
- •Тема 2.6 Измерители уровня
- •2.6.1 Широкополосные измерители уровня
- •2.6.2 Роль входного сопротивления вольтметра
- •Контрольные вопросы:
- •Тема 2.7 Измерение мощности в цепях постоянного тока и тока промышленной частоты
- •2.7.1 Общие сведения
- •2.7.2 Измерение мощности в диапазонах низких частот
- •Контрольные вопросы:
- •Раздел 3 Приборы формирования стандартных измерительных сигналов
- •Тема 3.1 Генераторы сигналов низкой частоты
- •3.1.2 Генераторы на биениях
- •3.2.8 Цифровые измерительные генераторы низких частот
- •Контрольные вопросы:
- •Тема 3.2 Генераторы сигналов высокой частоты
- •3.2.1 Измерительные lc-генераторы
- •3.2.2 Характеристики генераторов сверхвысоких частот
- •Контрольные вопросы:
- •Тема 3.3 Генераторы импульсных и шумовых сигналов
- •3.3.1 Генераторы импульсных сигналов
- •3.3.2 Генераторы качающейся частоты
- •3.3.3 Генераторы шумовых и шумоподобных сигналов
- •Контрольные вопросы:
- •Раздел 4 Исследование формы сигнала
- •Тема 4.1 Универсальные осциллографы
- •4.1.1 Упрощенная структурная схема осциллографа
- •4.1.2 Виды разверток в универсальном осциллографе
- •Контрольные вопросы:
- •Тема 4.2 Основные способы отсчета напряжения и временных интервалов
- •Контрольные вопросы:
- •Тема 4.3 Двухканальные и двухлучевые осциллографы
- •4.3.1 Двухканальные осциллографы
- •4.3.2 Двухлучевые осциллографы
- •4.3.3 Запоминающие осциллографы
- •4.3.4 Матричная индикаторная панель
- •4.3.5 Скоростные и стробоскопические осциллографы
- •4.3.6 Цифровые осциллографы
- •Контрольные вопросы
- •Раздел 5 Измерение параметров сигналов
- •Тема 5.1 Измерение частоты и временных интервалов
- •5.1.1 Общие сведения
- •5.1.2 Цифровой метод измерения частоты
- •5.1.3 Цифровой метод измерения интервалов времени
- •Котрольные вопросы:
- •Тема 5.2 Измерение фазового сдвига
- •5.2.1 Общие сведения
- •5.2.2 Осциллографические методы измерения фазового сдвига
- •Б) Метод синусоидальной развертки или метод эллипса
- •5.2.3. Метод преобразования фазового сдвига во временной интервал
- •5.2.4 Цифровые фазометры
- •Контрольные вопросы:
- •Тема 5.3. Измерение искажений формы сигналов
- •Контрольные вопросы:
- •Тема 5.4 Изменение параметров модулированных сигналов
- •Контрольные вопросы:
- •Раздел 6 Измерение характеристик, электромеханических цепей.
- •Тема 6.1. Измерение амплитудно-частотных характеристик
- •6.1.1 Общие сведения
- •6.1.2 Метод снятия ачх по точкам
- •6.1.3 Панорамные измерители ачх
- •Контрольные вопросы:
- •Тема 6.2 Измерение спектральных характеристик
- •6.2.1 Общие сведения
- •6.2.2 Параллельный и последовательный методы анализа спектра
- •Контрольные вопросы:
- •Тема 6.3 Измерение рабочего затухания и усиления
- •6.3.1 Общие сведения
- •6.3.2 Методы измерения рабочего затухания
- •6.3.3 Измерение рабочего усиления
- •Контрольные вопросы:
- •6.4. Измерение шумов
- •Раздел 7 Измерение параметров компонентов электрорадиотехнических цепей
- •Тема 7.1 Измерение параметров компонентов с сосредоточенными параметрами
- •7.1.1 Общие сведения
- •7.1.2 Измерение активных сопротивлений методом амперметра и вольтметра
- •7.1.3 Омметры
- •7.1.4 Измерение с помощью логометра
- •Для схемы, приведенной на рис. 7.6,б
- •7.1.5 Электронные омметры
- •7.1.6 Мостовые измерители параметров элементов
- •7.1.7 Резонансный метод измерения параметров элемента
- •7.1.8 Цифровые средства измерения параметров элементов
- •7.1.9 Измерение сопротивления заземления
- •Контрольные вопросы:
- •Раздел 8 Измерение электрических характеристик
- •8.1. Нормы электрических характеристик цепей связи для постоянного тока
- •8.2. Способы измерений нормированных электрических характеристик цепей связи
- •8.2 Виды повреждений и определение их характера
- •8.3 Определение постоянным током расстояния до места повреждения
- •9.4. Импульсный метод измерений линий
- •Раздел 9 Автоматизация электрорадиоизмерений
- •9.1 Основные сведения
- •Контрольные вопросы:
- •Список рекомендуемой литературы
7.1.6 Мостовые измерители параметров элементов
Для измерения параметров элементов цепей методом сравнения применяют мосты.
Сравнение измеряемой величины (сопротивления, индуктивности, емкости) с образцовой мерой при помощи моста в процессе измерения осуществляют вручную или автоматически, на постоянном или переменном токе.
Мостовые схемы обладают высокой чувствительностью, большой точностью, широким диапазоном измеряемых значений параметров элементов. На основе мостовых методов строят средства измерения, предназначенные как для измерения какой - либо одной величины, так и универсальные аналоговые и цифровые приборы.
Рисунок 7.8 Схемы четырехплечих мостов:
а - обобщенная; б - для измерения активных сопротивлений
НИ - нуль-индикатор
Существует несколько разновидностей мостовых схем измерения параметров R, L, С: четырехплечие, уравновешенные, неуравновешенные и процентные. Управление этими мостами может осуществляться как вручную, так и автоматически. Наибольшее распространение получили схемы четырехплечих уравновешенных мостов (рис. 7.8). Обобщенная структурная схема такого моста показана на рис. 7.8,а. Сопротивления четырехплечего моста в общем случае имеют комплексный характер.
Условия равновесия четырехплечего моста определяются равенствами:
Z1 Z4 = Z2 Z3, (7.7)
φ1 + φ4 = φ2 + φ3, (7.8)
где Z1, Z2, Z3, Z4 - модули комплексных сопротивлений; φ1, φ2, φ3, φ4 - их соответствующие фазы.
Для выполнения этих равенств необходимо наличие в плечах моста элементов с регулируемыми параметрами. Для обеспечения условия равенства амплитуд (7.7) наиболее удобно применять эталонное регулируемое активное сопротивление. Элементом, обеспечивающим условие равновесия фаз (7.8), служит эталонный конденсатор емкостью Со с малыми потерями.
Схема четырехплечего уравновешенного моста постоянного тока для измерений активных сопротивлений представлена на рис. 7.8,б. Электронный или цифровой нуль-индикатор НИ включают в диагональ уравновешенного моста. Ток в диагонали моста в момент измерения активного сопротивления устанавливают равным нулю. Для равновесия моста необходимо, чтобы выполнялось равенство RXR4 = R2Rз откуда неизвестное сопротивление
,
(7.9)
Для достижения равновесия моста с активными сопротивлениями достаточно иметь один регулируемый параметр (например, сопротивление резистора R4), как показано на рис. 7.8,б. Пределы измеряемых сопротивлений для этих мостов составляют от 10 -2 до 107 Ом; погрешности измерения - от долей процента до нескольких процентов в зависимости от диапазона измерения.
Показанная на рис. 7.8,б схема моста может быть частично реализована на цифровых элементах. Для этого регулируемый резистор изготавливают в виде набора сопротивлений, выполненных в соответствии с двоично-десятичным кодом. Сопротивления поочередно включают в плечо измерительного моста до тex пор, пока мост не уравновесится. Положение ключей характеризует собой код измеряемой величины, поступающий затем на цифровое отсчетное устройство.
Ряд схем мостов на переменном токе для измерения индуктивности и добротности катушек представлен на рис. 7.9. В них используют источники гармонического тока с напряжением U и угловой частотой ω. Эти четырехплечие мосты обеспечивают наилучшее уравновешивание. Эквивалентные схемы замещения для катушек индуктивности с потерями могут быть последовательными или параллельными в зависимости от потерь, отраженных активным сопротивлением.
Рисунок 7.9 Схемы мостов для измерения индуктивностей
и их добротностей с образцовыми элементами:
а — катушкой; б — конденсатором
Условие равновесия четырехплечего моста для схемы, показанной на рис. 7.9,а, имеет вид:
R1(Rx + jωLx) = R2(R0 + jωL0), (7.9)
где Lx и Rx - измеряемые индуктивность и сопротивление омических потерь в катушке; Lo и R0 - образцовые индуктивность и сопротивление.
Приравняв действительные и мнимые члены формулы (7.9) получим:
Lx = L0R2/R1; Rx = RoR2/R1, (7.10)
Поскольку изготовление высокодобротных образцовых катушек вызывает определенные трудности, часто в качестве образцовой меры в мостах переменного тока применяют конденсатор (рис. 7.9,б). Для этой схемы
Rx + jωLx = R2R3(l/R0 + jωC0), (7.11)
Если в данном уравнении приравнять отдельно вещественную и мнимую части, то получим следующие выражения для определения параметров катушки индуктивности:
RX = R2R3/R0; Lх = CoR2R3, (7.12)
Добротность катушки:
Qx = ωLx/Rx = R0ωC0, (7.13)
Для измерения емкости и тангенса угла потерь конденсаторов с достаточно малыми потерями применяют мостовую схему, представленную на рис. 7.10,а (последовательное соединение элементов Cx и Rx), а с большими потерями - на рис. 7.10,б (параллельное соединение элементов Сх и Rx).
Рисунок 7.10 Схемы мостов для измерения емкости и тангенса угла потерь:
а - с малыми потерями; б - с большими потерями
Условие равновесия для схемы, показанной на рис. 7.10,а, имеет вид:
R4[RX + 1/(jωСx)] = R2[Ro + 1/(jωС0)], (7.14)
Разделив вещественную и мнимую части последнего выражения, получаем следующие формулы для определения параметров конденсатора:
Cх = C0R4/R2; Rx = R2R0/R4, (7.15)
Тангенс угла потерь конденсатора:
tgδх = ωCхRx = ωC0R0, (7.16)
Для моста с параллельным соединением элементов Сх и Rx (см. рис. 7.10,б) условие равновесия имеет следующий вид:
R4Rx(1 + jωC0R0) = R2R0(1 + jωCxRx), (7.17)
Отсюда
Сх = C0R4/R2; Rx = R2R0/R4, (7.18)
Тангенс угла потерь конденсатора при параллельной схеме его замещения:
tg δ = 1/(ωСхRх) = 1/(ωС0R0), (7.19)
Уравновешивание схем обеспечивают поочередным регулированием переменных образцовых сопротивлений или емкостей. Эту процедуру называют шагами, а количество шагов определяет сходимость моста. Мост с хорошей сходимостью имеет не более пяти шагов.
Мосты переменного тока используют на низких частотах: 500...5000 Гц. При работе на повышенных частотах погрешности измерения резко возрастают. Погрешность измерений моста переменного тока определяют погрешности элементов образующий мост, переходных сопротивлений контактов и чувствительность схемы. Мосты переменного тока больше чем мосты постоянного тока подвержены влиянию помех и паразитных связей между плечами, плечами и землей и т.д. Поэтому, даже при тщательном экранировании моста и принятии других мер защиты, погрешности у мостов переменного тока больше, чем у мостов постоянного тока.
