Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ERI-2004.doc
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
3.39 Mб
Скачать

6.2.2 Параллельный и последовательный методы анализа спектра

Анализаторы параллельного типа чаще применяют для анализа спектров одиночных импульсных сигналов. Схема анализатора содержит n полосовых фильтров Ф, каждый из которых настроен на определенную частоту (рис. 6.7,а). Исследуемый сигнал u(t) спектр которого расположен в полосе частот Δfn (рис. 6.7,б), подают на все фильтры одновременно. Фильтры имеют идентичные АЧХ с одинаковыми полосами пропускания Δfф и настроены на определенные частоты (рис. 6.7,в). Сигналы на выходе фильтров определяют составляющие спектра анализируемого процесса

Рисунок 6.7 Параллельный анализ спектра:

а - структурная схема анализатора; б - исследуемый спектр;

в - АЧХ фильтров; г - спектр на выходе анализатора

(рис. 6.7,г). После детектирования в детекторах Д, спектральные составляющие поступают на регистрирующие устройства РУ.

Полоса пропускания фильтра определяет статическую разрешающую способность анализатора (при условии, что время анализа велико, т.е. Та → ∞). Разрешающая способность анализатора - способность различать составляющие спектра с близкими частотами. Чем уже полоса пропускания фильтра, тем выше разрешающая способность. При широкой полосе пропускания несколько соседних составляющих не будут разделяться. Если оценивать разрешающую способность значением полосы частот Δƒр при которой возможно разделение ближайших составляющиx, то при идеальной (прямоугольной) АЧХ фильтра можно полагать Δƒр = Δƒф. Для реальных фильтров Δƒр = 2Δƒф. Если время анализа Та мало, то говорят о динамической разрешающей способности.

Необходимое время анализа для правильного воспроизведения спектра при параллельном исследовании может быть принято равным τу - времени установления напряжения на выходе фильтра с прямоугольной частотной характеристикой и рабочей полосой Δƒф (от уровня 0,1 до уровня 0,9 от установившегося значения). Из теории электрических фильтров известно, что время установления τу = 0,86/( Δƒф ), следовательно, Та ≈ τу = 1/( Δƒф ). Тогда скорость параллельного анализа будет:

, (6.4)

Скорость анализа снижается при сужении полосы пропускания фильтра. К достоинству анализаторов параллельного типа относится малое время анализа. На погрешность при параллельном анализе влияют: конечность времени установления колебаний на выходе фильтра и зависимость ее от полосы пропускания, различие характеристик фильтров, настроенных на разные частоты.

Последовательный анализ чаще всего применяют для исследования спектров многократно повторяющихся процессов.

На рис. 6.8 показана упрощенная структурная схема анализатора спектра последовательного типа. Анализатор содержит супергетеродинный приемник, индикаторное (чаше осциллографическое) устройство и калибратор. Супергетеродинный приемник служит для последовательного во времени выделения гармонических составляющих спектра входного сигнала. Приемник состоит из входного устройства, смесителя, генератора качающейся частоты ГКЧ, усилителя промежуточной частоты и

Рисунок 6.8 Структурная схема анализатора спектра последовательного типа

амплитудного детектора. К приемнику можно отнести и выходной усилитель. Настройку приемника на разные частоты производят с помощью напряжения, поступающего с выхода генератора развертки. С помощью индикаторного устройства наблюдают спектр исследуемого процесса. Калибратор используют для измерения характерных параметров спектра: частот, соответствующих максимумам или нулевым значениям огибающей спектра и т.д.

Рассмотрим процессы, протекающие в анализаторе спектра (рис. 6.8). Входной сигнал u(t) подают на смеситель через входное устройство. На второй вход смесителя поступает сигнал от ГКЧ.

На рис. 6.9,а,б показаны соответственно изменение во времени частоты ГКЧ (частота fгкч меняется от fmin до fmax в такт с изменением напряжения генератора развертки), форма амплитудно-частотной характеристики УПЧ uупч, и диаграмма спектра S(f) исследуемого сигнала (на диаграмме он показан тремя гармоническими составляющими, отражающими однотональное амплитудно-модулированное колебание).

При воздействии на смеситель исследуемого сигнала и напряжения ГКЧ составляющие спектра S(f) преобразуют в диапазон промежуточных частот S(fпр).

Форма спектра сигнала при этом сохраняется.

С линейным изменением частоты ГКЧ спектральные составляющие преобразованного спектра также линейно изменяются во времени и последовательно попадают в полосу пропускания УПЧ (рис. 6.9,в). Напряжение на выходе УПЧ имеет вид радиоимпульсов (рис. 6.9,г), амплитуды которых при постоянном напряжении ГКЧ пропорциональны амплитудам составляющих исследуемого спектра.

Рисунок 6.9 Сигналы в анализаторе спектра последовательного типа:

а - изменение частоты ГКЧ; б - исследуемый спектр и АЧХ УПЧ; в - линейное изменение частоты во времени; г - сигнал на выходе УПЧ; д - сигнал на выходе детектора

Рисунок 6.10 Диаграммы к определению разрешающей способности анализатора:

а - спектр сигнала; б - эпюры спектров

С выхода УПЧ радиоимпульсы попадают на амплитудный детектор.

Рис. 9.5. Диаграммы к определению разрешающей способности анализатора:

а — спектр сигнала; б — эпюры спектров на экране

На выходе амплитудного детектора образуются видеоимпульсы uд (рис.6.9,д), поступающие через выходной усилитель на вертикально отклоняющие пластины ЭЛТ. На горизонтально отклоняющий пластины ЭЛТ подают пилообразное напряжение генератора развертки, в результате чего на экране осциллографа появляются видеоимпульсы, изображающие спектр исследуемого сигнала в течение одного периода развертки Тр = Та. Диаграммы на рис. 6.9 построены при условии, что разность частот соседних составляющих спектра много больше полосы пропускания УПЧ, при этом возможна сравнительно малая статическая разрешающая способность (т.е. большой интервал частот Δƒр). На практике допускают некоторое перекрытие изображений гармоник (рис. 6.10).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]