- •Раздел 1 Введение. Общие понятия измерительной техники
- •1.1. Общие сведения
- •Тема 1.1 Основные виды и методы измерений, их классификация
- •1.1.1 Виды измерений
- •1.1.2 Методы измерений
- •1.1.3 Средства измерений и их классификация
- •1.1.4 Элементарные средства измерений
- •1.1.5 Комплексные средства измерений
- •Контрольные вопросы:
- •Тема 1.2 Метрологические показатели средств измерений
- •1.2.1 Физические свойства и величины
- •1.2.2 Основные показатели
- •Контрольные вопросы:
- •Тема 1.3 Погрешности как характеристики средств измерений
- •1.3.1 Общие сведения
- •1.3.2 Классы точности средств измерений
- •1.3.3 Общие сведения об обработке результатов измерений
- •Контрольные вопросы:
- •Раздел 2 Измерение тока, напряжения, мощности
- •Тема 2.1
- •Измерение постоянного тока и напряжения электромеханическими измерительными приборами
- •2.1.1 Электромеханические приборы
- •Контрольные вопросы:
- •Тема 2.2 Выпрямительные и термоэлектрические приборы
- •2.2.1 Магнитоэлектрические приборы с преобразователями переменного тока в постоянный
- •2.2.2 Компенсаторы постоянного тока
- •Контрольные вопросы:
- •Тема 2.3 Аналоговые электронные вольтметры
- •2.3.1 Общие сведения
- •2.3.2 Техника измерения напряжения
- •2.3.3 Особенности измерения силы тока
- •2.3.4 Определение уровня переменного напряжения (тока)
- •2.3.5 Структурные схемы аналоговых вольтметров
- •Контрольные вопросы:
- •Тема 2.4 Цифровые вольтметры
- •2.4.1 Кодоимпульсные цифровые вольтметры
- •2.4.2 Вольтметры с времяимпульсным преобразованием
- •Из последних равенств получим
- •Контрольные вопросы:
- •Тема 2.5 Вольтметры импульсного напряжения
- •2.5.1 Измерения импульсных напряжений
- •2.5.2 Измерение шумового напряжения
- •Контрольные вопросы:
- •Тема 2.6 Измерители уровня
- •2.6.1 Широкополосные измерители уровня
- •2.6.2 Роль входного сопротивления вольтметра
- •Контрольные вопросы:
- •Тема 2.7 Измерение мощности в цепях постоянного тока и тока промышленной частоты
- •2.7.1 Общие сведения
- •2.7.2 Измерение мощности в диапазонах низких частот
- •Контрольные вопросы:
- •Раздел 3 Приборы формирования стандартных измерительных сигналов
- •Тема 3.1 Генераторы сигналов низкой частоты
- •3.1.2 Генераторы на биениях
- •3.2.8 Цифровые измерительные генераторы низких частот
- •Контрольные вопросы:
- •Тема 3.2 Генераторы сигналов высокой частоты
- •3.2.1 Измерительные lc-генераторы
- •3.2.2 Характеристики генераторов сверхвысоких частот
- •Контрольные вопросы:
- •Тема 3.3 Генераторы импульсных и шумовых сигналов
- •3.3.1 Генераторы импульсных сигналов
- •3.3.2 Генераторы качающейся частоты
- •3.3.3 Генераторы шумовых и шумоподобных сигналов
- •Контрольные вопросы:
- •Раздел 4 Исследование формы сигнала
- •Тема 4.1 Универсальные осциллографы
- •4.1.1 Упрощенная структурная схема осциллографа
- •4.1.2 Виды разверток в универсальном осциллографе
- •Контрольные вопросы:
- •Тема 4.2 Основные способы отсчета напряжения и временных интервалов
- •Контрольные вопросы:
- •Тема 4.3 Двухканальные и двухлучевые осциллографы
- •4.3.1 Двухканальные осциллографы
- •4.3.2 Двухлучевые осциллографы
- •4.3.3 Запоминающие осциллографы
- •4.3.4 Матричная индикаторная панель
- •4.3.5 Скоростные и стробоскопические осциллографы
- •4.3.6 Цифровые осциллографы
- •Контрольные вопросы
- •Раздел 5 Измерение параметров сигналов
- •Тема 5.1 Измерение частоты и временных интервалов
- •5.1.1 Общие сведения
- •5.1.2 Цифровой метод измерения частоты
- •5.1.3 Цифровой метод измерения интервалов времени
- •Котрольные вопросы:
- •Тема 5.2 Измерение фазового сдвига
- •5.2.1 Общие сведения
- •5.2.2 Осциллографические методы измерения фазового сдвига
- •Б) Метод синусоидальной развертки или метод эллипса
- •5.2.3. Метод преобразования фазового сдвига во временной интервал
- •5.2.4 Цифровые фазометры
- •Контрольные вопросы:
- •Тема 5.3. Измерение искажений формы сигналов
- •Контрольные вопросы:
- •Тема 5.4 Изменение параметров модулированных сигналов
- •Контрольные вопросы:
- •Раздел 6 Измерение характеристик, электромеханических цепей.
- •Тема 6.1. Измерение амплитудно-частотных характеристик
- •6.1.1 Общие сведения
- •6.1.2 Метод снятия ачх по точкам
- •6.1.3 Панорамные измерители ачх
- •Контрольные вопросы:
- •Тема 6.2 Измерение спектральных характеристик
- •6.2.1 Общие сведения
- •6.2.2 Параллельный и последовательный методы анализа спектра
- •Контрольные вопросы:
- •Тема 6.3 Измерение рабочего затухания и усиления
- •6.3.1 Общие сведения
- •6.3.2 Методы измерения рабочего затухания
- •6.3.3 Измерение рабочего усиления
- •Контрольные вопросы:
- •6.4. Измерение шумов
- •Раздел 7 Измерение параметров компонентов электрорадиотехнических цепей
- •Тема 7.1 Измерение параметров компонентов с сосредоточенными параметрами
- •7.1.1 Общие сведения
- •7.1.2 Измерение активных сопротивлений методом амперметра и вольтметра
- •7.1.3 Омметры
- •7.1.4 Измерение с помощью логометра
- •Для схемы, приведенной на рис. 7.6,б
- •7.1.5 Электронные омметры
- •7.1.6 Мостовые измерители параметров элементов
- •7.1.7 Резонансный метод измерения параметров элемента
- •7.1.8 Цифровые средства измерения параметров элементов
- •7.1.9 Измерение сопротивления заземления
- •Контрольные вопросы:
- •Раздел 8 Измерение электрических характеристик
- •8.1. Нормы электрических характеристик цепей связи для постоянного тока
- •8.2. Способы измерений нормированных электрических характеристик цепей связи
- •8.2 Виды повреждений и определение их характера
- •8.3 Определение постоянным током расстояния до места повреждения
- •9.4. Импульсный метод измерений линий
- •Раздел 9 Автоматизация электрорадиоизмерений
- •9.1 Основные сведения
- •Контрольные вопросы:
- •Список рекомендуемой литературы
4.3.4 Матричная индикаторная панель
Новым отображающим устройством, применяемым в современных осциллографах с аналого-цифровым и полностью цифровым преобразованием исследуемого сигнала, является матричная индикаторная панель. Она представляет собой совокупность расположенных определенным образом отдельных дискретных излучателей (жидкокристаллических, газоразрядных, твердотельных, плазменных и т.д.). На рис. 4.9 показана конструкция матричной газоразрядной панели.
Матричная панель содержит две стеклянные пластины 1, на внешних поверхностях которых напылены тонкие проводящие полоски - аноды 2 и катоды 3. Аноды располагают на лицевой пластине, через которую проходит световое излучение, поэтому их делают прозрачными.
Рисунок 4.9 Матричная панель:
1 - стеклянные пластины; 2 - аноды; 3 - катоды; 4 - матрица
Между пластинами помещают диэлектрическую матрицу 4 с отверстиями, образующими газоразрядные (или другие) ячейки в точках перекрестия электродов. Панель заполняют гелий-неоновой смесью и герметизируют. Изображение исследуемого сигнала воспроизводят поочередным свечением газоразрядных ячеек. Для этого со схемы управления панелью на аноды и катоды пластин подают соответственно положительный и отрицательный импульсы напряжений поджига. Номер анода, на который подают импульс напряжения поджига, определяет строку развертки, а номер катода - столбец; на их перекрестии располагается светящаяся ячейка панели. Такой принцип управления лучом развертки называют матричным, на практике его реализуют цифровыми методами и устройствами.
Преимущества матричных индикаторных панелей: малые габариты и вес, низкие напряжения питания; в них отсутствуют геометрические искажения, светящаяся точка стабильна. Разработаны панели с внутренней памятью, способные не только воспроизводить, но и запоминать изображение сигнала. Цифровой принцип управления позволяет достаточно просто совместить изображение сигнала с цифробуквенной индикацией его параметров на одном экране. К недостаткам матричных индикаторных панелей следует отнести сложность схемы управления, сравнительно невысокую разрешающую способность и низкое быстродействие.
4.3.5 Скоростные и стробоскопические осциллографы
При наблюдении и исследовании коротких импульсов (сигналов наносекундных длительностей) и колебаний СВЧ-диапазона возникает ряд сложностей, которые делают применение универсальных осциллографов затруднительным. Можно выделить несколько основных факторов, затрудняющих применение для этих целей универсальных осциллографов:
влияние емкости пластин ЭЛТ на крутизну фронта исследуемого сигнала;
паразитные резонансы, возникающие в цепях, образуемых емкостью пластин и индуктивностью подводящих проводов, включая вводы пластин;
влияние конечного времени пролета электронов между пластинами ЭЛТ, составляющее 1...10 нс;
необходимо иметь широкую полосу пропускания канала Y;полосу пропускания для передачи прямоугольного импульса приближенно можно рассчитать по формуле Δf ≈ 2,5/τи, тогда при длительности импульса τи = 1 нс полоса пропускания Δf ≈ 2,5 ГГц;
для наблюдения наносекундных импульсов и СВЧ-колебаний требуются высокие скорости движения луча по экрану; так, например, для получения изображения импульса длительностью τи = 5 нс на экране ЭЛТ шириной L = 100 мм скорость движения луча должна быть порядка v = 20 000 км/с (v = L/τи - скорость движения луча, L - размер изображения на экране).
Все отмеченные недостатки требуется учитывать при разработке скоростных осциллографов. В скоростных осциллографах, работающих в реальном масштабе времени, применяют специальные ЭЛТ бегущей волны, что в результате не позволяет получить высокую чувствительность канала вертикального отклонения (Sу ≈ 1 мм/В). Создание высокоскоростных разверток также встречает трудности; необходимо поднимать напряжение развертки до нескольких сотен вольт. Разработанные скоростные осциллографы имеют верхнюю граничную частоту 5...7,5 ГГц. При исследовании быстротекущих процессов с малой амплитудой напряжения, описанные скоростные осциллографы не пригодны из-за низкой чувствительности. Проблему решают с помощью специальной стробоскопической приставки к универсальному осциллографу. Стробоскопический метод осциллографирования дает возможность существенно уменьшить скорость развертки по сравнению с той, которая требуется при непосредственном наблюдении исследуемого сигнала на скоростном осциллографе. Стробоскопические осциллографы позволяют наблюдать очень короткие периодические импульсы и высокочастотные сигналы вплоть до СВЧ- колебаний.
Стробоскопическим называют осциллограф, в котором для получения на экране ЭЛТ формы сигнала используют отбор его мгновенных значений (выборки сигнала) и выполняют временное преобразование, т.е. изображение сигнала дают в увеличенном масштабе времени. Принцип действия заключается в преобразовании нескольких идентичных сигналов малой длительности в один, имеющий большую длительность и повторяющий форму входных сигналов. Скорость развертки уменьшают путем трансформации масштаба времени. На экране осциллографа появляется изображение, по форме подобное исследуемому сигналу, но в увеличенном временном масштабе. Структурная схема стробоскопического осциллографа кроме узлов, типичных для универсальных осциллографов, содержит стробоскопический преобразователь и устройство стробоскопической развертки, включающее генератор развертки, генератор строб-импульсов и блок автоматического сдвига, задающий шаг считывания.
Основным устройством осциллографа является стробоскопический преобразователь, в котором происходит дискретизация Повторяющегося исследуемого сигнала с помощью кратковременных строб-импульсов. Структурная схема и временные диаграммы преобразователя входного сигнала приведены на рис.
4.10. Преследуемые импульсы Uс, длительностью τ и периодом повторения Тс подают совместно со строб-импульсами U2 на стробоскопический смеситель (рис. 4.10, а). Период следования строб-импульсов Тстр = Тс + Δt, где Δt - шаг считывания. Длительность Δt выбирают из условия Δt = τ/n (n - целое число). В результате этого
преобразования оказывается, что первый строб-импульс совпадает с началом первого импульса Uc (1), 2-й - сдвинут от начала 2-го (2) импульса Uс на Δt , 3-й сдвинут от начала 3-го (3) импульса Uc на 2Δt и т.д. (рис, 4.10, б).
Рисунок 4.10 Принцип работы стробоскопического преобразователя:
а - схема; б - временные диаграммы
На выходе смесителя появляются короткие импульсы U3 (жирные линии с точкой), совпадающие по времени со строб-импульсами (U2), но имеющие амплитуду, равную амплитуде исследуемых импульсов Uc в момент поступления строб-импульсов U2. Поэтому импульсы U3 называют строб-импульсами, промодулированными по амплитуде исследуемым сигналом Uc (рис.4.10, б). Как видно из диаграммы сигнала U3, огибающая промодулированных строб-импульсов (жирная штриховая линия на рис. 4.10, б) практически повторяет форму исследуемых импульсов Uc, но по сравнению с ними растянута во времени. Импульсы Ц усиливают, затем расширяют до требуемой длительности и подают через усилитель канала Y на отклоняющие пластины стробоскопического осциллографа. При этом на экране осциллографа с обычными ЭЛТ и пилообразной разверткой наблюдают форму импульсов Uc.
Для большей контрастности изображения плоские участки расширенного во времени исследуемого сигнала подсвечивают импульсами схемы подсвета луча. Таким образом изображение сигнала будет иметь вид светящихся черточек, что является характерным признаком осциллограммы стробоскопического осциллографа.
Степень растянутости наблюдаемого импульса во времени (временное преобразование) характеризуют коэффициентом трансформации масштаба времени Ктр = nТстр/τ, где n - число строб-импульсов, считывающих импульс Uс. Поскольку n = τ/Δt, то:
Ктр = Тстр/Δt, (4.2)
В современных осциллографах Kтр достигает десятков тысяч, что позволяет при обычных развертках наблюдать форму наносекундных импульсов. Полоса пропускания современных стробоскопических осциллографов превышает 10 ГГц; уровень входного сигнала - от нескольких милливольт до десятков вольт; погрешность измерения 5...7,5%.
