Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лукьянов.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
236.03 Кб
Скачать

1. Объясните основные отличия методов ггк и нгк, а также отличительные особенности применяемой скважинной аппаратуры.

2. Каротажный подъемник. Устройство, кинематическая схема подъемника.

проведение спускоподъемных операций в про-цессе геофизических исследований в нефтяных и газовых

скважинах.

` с механическим, гидравлическим или электричес-ким приводами лебёдки.

‹ СПА со встроенной в барабан двухскоростной трансмиссией;

‹ Одно/двухскоростная внешняя трансмиссия с цепным приво-дом барабана – позволяет реализовать возможность замены

барабана;

‹ Дополнительная промежуточная трансмиссия для обеспече-ния необходимого диапазона скоростей;

‹ Использование трансмиссий с технологическим режимом

«нейтраль» для смотки/намотки кабеля;

‹ Одно/двухсекционный барабан – использование разных ка-белей на одном барабане.

Экзаменационный билет № 16

1. Дайте понятие упругой волны, какие существуют волны, какими параметрами они характеризуются, какие факторы и как они влияют на параметры волн.

Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими

2. Назначение каротажного кабеля, его обозначение и устройство.

Каротажный геофизический кабель относится к типу универсальных аналоговых кабельных линий передачи информации от скважинных приборов к каротажной станции и передачи управляющих сигналов на скважинные приборы. Пропускная информационная способность каротажного кабеля определяет скорость каротажа, особенно в комплексных методах ГИС. Однако каротажный кабель является не только электрической линией передачи информации, но и тросом с достаточно большим (до нескольких тонн) разрывным усилием, несущим скважинные приборы в химически- и механически агрессивной среде скважин. По существу, это кабель-трос специального технологического назначения, работающий в широком диапазоне температур (от минусовых на поверхности до 100-150 и более градусов на больших глубинах), что накладывает определенные ограничения на его характеристики, как линии связи. Реальная скорость передачи информации (бит/с) современных кабелей в зависимости от их длины ограничиваются диапазоном до 10-100 кГц, что начинает существенно сдерживать развитие и совершенствование технологий ГИС.

По числу токопроводящих жил (ТПЖ) каротажные кабели разделяются на три основных вида: одно-, трех- и семижильные. Как правило, кабельные каналы связи рассматриваются в рамках теории однородных длинных линий с постоянными электрическими параметрами кабеля по всей его длине. Однако в процессе каротажа различные части кабеля находятся в неодинаковых условиях давления и температуры, что приводит к изменению первичных параметров, как во времени, так и по длине кабеля. Однако, как показали исследования, изменение первичных параметров бронированных кабелей хотя и имеет место, но не столь значительно, чтобы отказаться от использования теории однородных линий.

Одножильные бронированные каротажные кабели, в принципе, относятся к разновидности коаксиальных кабелей с концентрическим расположением жилы (прямого провода) внутри брони (обратного провода). Взаимодействие электромагнитных полей прямого и обратного проводника в идеальном коаксиальном кабеле при равных значениях тока и разных его направлениях создает нулевое значение электромагнитного поля за пределами кабеля, т.е. электромагнитное поле сигналов сосредоточено внутри кабеля, что и обеспечивает эффективную передачу электромагнитной энергии с минимальными потерями. Центральная жила и оплетка коаксиальных кабелей выполняются из немагнитных материалов (медь), что также не создает потерь на перемагничивание магнитных материалов.

Каротажный кабель, в отличие от коаксиального, в качестве оплетки имеют стальную броню без поверхностной изоляции, а, следовательно, локализованного обратного тока в этой броне не существует как для одножильного, так и для многожильного кабеля. Это действительно как для кабеля на барабане лебедки, где броня представляет в какой-то мере сплошной металлический монолит, так и для кабеля в скважине, где броня – линейный заземленный электрод. Следовательно, в каротажных кабелях появляется весьма существенный источник потерь электромагнитной энергии сигналов – на перемагничивание стальной брони электромагнитными полями токопроводящих жил и межпроводниковыми электромагнитными полями (при двухпроводной передаче сигналов), а также на потери электромагнитной энергии обратного тока в окружающей среде. Эти потери нарастают с увеличением частоты тока и приводят к существенному частотному ограничению импульсной пропускной способности кабеля. Их место в математической модели кабеля подлежать уточнению.

Экзаменационный билет № 17