
- •1. Степень превращения. Влияние температуры процесса на конверсию в случае протекания обратимых и необратимых процессов.
- •2. Селективность процесса. Влияние температуры процесса на интегральную селективность.
- •3. Дифференциальная селективность. Выбор оптимальных условий проведения процесса.
- •4. Расходные коэффициенты по сырью. Теоретический и практический расходные коэффициенты. Взаимосвязь коэффициентов. Рецикл как способ снижения расходного коэффициента по сырью.
- •5. Основные стадии проведения хтп. Процессы и оборудование, используемые на каждой стадии.
- •6. Методика расчета материального баланса сложных необратимых процессов по целевому продукту.
- •7. Методика расчета материального баланса сложного необратимого процесса по исходному сырью.
- •8. Основные законы формальной кинетики: уравнение Аррениуса, закон действующих масс.
- •9. Основные положения, итоговое уравнение и выводы по теории активных соударений.
- •10. Основные положения, итоговое уравнение и выводы по теории переходного состояния.
- •11. Взаимосвязь кинетики и термодинамики процесса. Определение структуры переходного состояния (активного комплекса).
- •12. Определение количества ключевых веществ и независимых стадий. Выбор ключевых веществ. Зависимые и независимые химические реакции.
- •13. Вывод кинетических уравнений. Метод квазистационарных состояний (принцип Боденштейна – Семенова).
- •14. Равновесие химических реакций. Константа равновесия. Взаимосвязь констант равновесия.
- •15. Уравнение Вант-Гоффа. Зависимость константы равновесия от температуры.
- •16. Необходимые и достаточные условия самопроизвольного протекания процесса. Уравнение Гиббса.
- •17. Равновесие химических реакций. Расчет равновесного состава обратимых реакций.
- •18. Определение оптимальных параметров процесса протекания обратимых реакций. Принципы смещения равновесия (принцип Ле-Шателье).
- •20. Равновесные реакции. Расчет константы равновесия.
- •21. Замещение у насыщенного атома углерода. Реакции нуклеофильного замещения по типу Sn-1.
- •22. Замещение у насыщенного атома углерода. Реакции нуклеофильного замещения по типу Sn-2.
- •23. Гидрирование олефиновых углеводородов. Механизм, условия и катализаторы процесса гидрирования олефинов.
- •24. Процессы окисления. Механизм и условия процесса эпоксидирования олефинов надкислотами (реакция Прилежаева).
- •25. Процессы окисления. Механизм и условия процесса озонирования олефинов. Уравнения Кирхгоффа и Темкина-Шварцмана.
23. Гидрирование олефиновых углеводородов. Механизм, условия и катализаторы процесса гидрирования олефинов.
Присоединение водорода к алкенам, которое осуществляется только под действием соответствующих металлических катализаторов, таких как Ni, Pt, Pd, приводит обычно к образованию цис-продуктов. Нескомпенсированные валентности тех атомов металла, которые расположены на поверхности металла, в отличие от скомпенсированных валентностей атомов металла, расположенных внутри кристалла, направлены преимущественно в стороны от поверхности. В результате, как этилен, так и водород реагируют с поверхностью металла экзотермически и обратимо. Молекулы этилена адсорбируются на поверхности металла за счет своих π-электронов, чего не происходит с этаном. В молекулах водорода нет таких π-электронов, но экзотермическая адсорбция водорода на поверхности металлов свидетельствует о значительном ослаблении связи между атомами.
В процессе гидрирования этилена на поверхности металла оба атома водорода одновременно присоединяются с одной и той же стороны к двум атомам углерода молекулы этилена; при этом становится понятной причина наблюдаемого стереоспецифического присоединения с образованием цис-продуктов. Образующаяся молекула этана немедленно десорбируется и соответствующий участок поверхности металла становится доступным для след. каталитического цикла. Вопрос о том, будет ли данный металл эффективно катализировать реакцию гидрирования или нет, определяется реальными размерами его атомов на поверхности и расстоянием между ними. И даже в случае кристаллов такого металла, как никель, который способен катализировать эту реакцию, одна из сторон кристалла может оказаться более эффективной по сравнению с другой в зависимости от того, насколько близки реальные расстояния между атомами к оптимальному для данной реакции. В этом состоит причина того, что каталитической активностью обладает только относительно небольшая доля поверхности металла, включающая так называемые активные центры.
Стереоспецифический характер гидрирования, приводящий к образованию цис-продуктов, очень широко используется при установлении структуры различных соединений синтетическими методами.
24. Процессы окисления. Механизм и условия процесса эпоксидирования олефинов надкислотами (реакция Прилежаева).
Первым достаточно селективным и общим методом эпоксидирования олефинов явл-ся реакция Прилежаева, состоящая во взаимодействии олефинов с надкислотами, прежде всего с наиболее доступной из них надуксусной кислотой.
Реакция проводится в растворителе при 30-50 0С, когда дальнейшее присоединение карбоновой кислоты с раскрытием α-оксидного цикла еще не является существенным.
Эпоксидирование по двойной связи состоит в использовании надуксусной кислоты, синтезируемой непосредственно в реакционной смеси из уксусной кислоты и пероксида водорода при кислотном катализе. Поскольку α-оксиды чувствительны к действию кислот, этот способ дает хорошие результаты только при осуществлении в системе из двух фаз (водная и органическая), когда надкислота, образующаяся в водной фазе, переходит в органическую и там эпоксидирует нерастворимое в воде ненасыщенное орг. Вещество: