Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тири́стор.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
164.86 Кб
Скачать

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости. Различие по проводимости означает, что бывают тиристоры, проводящие ток в одном направлении (например тринистор, изображённый на рисунке) и в двух направлениях (например, симисторы, симметричные динисторы).

Тиристор имеет нелинейную вольт-амперную характеристику (ВАХ) с участком отрицательного дифференциального сопротивления. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала, если протекающий через тиристор ток превышает некоторую величину, называемую током удержания.

Содержание

  [убрать] 

  • 1 Устройство и основные виды тиристоров

  • 2 Вольтамперная характеристика тиристора

  • 3 Режимы работы триодного тиристора

    • 3.1 Режим обратного запирания

    • 3.2 Режим прямого запирания

      • 3.2.1 Двухтранзисторная модель

    • 3.3 Режим прямой проводимости

    • 3.4 Эффект dU/dt

    • 3.5 Эффект di/dt

  • 4 Классификация тиристоров[2][3][4]

    • 4.1 Отличие динистора от тринистора

    • 4.2 Отличие тиристора триодного от запираемого тиристора

    • 4.3 Симистор

  • 5 Характеристики тиристоров

  • 6 Применение

  • 7 См. также

  • 8 Примечания

  • 9 Литература

  • 10 Ссылки

Устройство и основные виды тиристоров[править | править исходный текст]

Рис. 1. Схемы тиристора: a) Основная четырёхслойная p-n-p-n-структура b) Диодный тиристор с) Триодный тиристор.

Основная схема тиристорной структуры показана на рис. 1. Она представляет собой четырёхслойный полупроводник структуры p-n-p-n, содержащий три последовательно соединённых p-n-перехода J1, J2, J3. Контакт к внешнему p-слою называется анодом, к внешнему n-слою — катодом. В общем случае p-n-p-n-прибор может иметь до двух управляющих электродов (баз), присоединённых к внутренним слоям. Подачей сигнала на управляющий электрод производится управление тиристором (изменение его состояния). Прибор без управляющих электродов называется диодным тиристором или динистором. Такие приборы управляются напряжением, приложенным между основными электродами. Прибор с одним управляющим электродом называют триодным тиристором или тринистором[1] (иногда просто тиристором, хотя это не совсем правильно). В зависимости от того, к какому слою полупроводника подключён управляющий электрод, тринисторы бывают управляемыми по аноду и по катоду. Наиболее распространены последние.

Описанные выше приборы бывают двух разновидностей: пропускающие ток в одном направлении (от анода к катоду) и пропускающие ток в обоих направлениях. В последнем случае соответствующие приборы называются симметричными (так как ихВАХ симметрична) и обычно имеют пятислойную структуру полупроводника. Симметричный тринистор называется такжесимистором или триаком (от англ. triac). Следует заметить, что вместо симметричных динисторов, часто применяются их интегральные аналоги, обладающие лучшими параметрами.

Тиристоры, имеющие управляющий электрод, делятся на запираемые и незапираемые. Незапираемые тиристоры, как следует из названия, не могут быть переведены в закрытое состояние с помощью сигнала, подаваемого на управляющий электрод. Такие тиристоры закрываются, когда протекающий через них ток становится меньше тока удержания. На практике это обычно происходит в конце полуволны сетевого напряжения.

Вольтамперная характеристика тиристора[править | править исходный текст]

Рис. 2. Вольтамперная характеристика тиристора

Типичная ВАХ тиристора, проводящего в одном направлении (с управляющими электродами или без них), приведена на рис 2. Она имеет несколько участков:

  • Между точками 0 и 1 находится участок, соответствующий высокому сопротивлению прибора — прямое запирание.

  • В точке 1 происходит включение тиристора.

  • Между точками 1 и 2 находится участок с отрицательным дифференциальным сопротивлением.

  • Участок между точками 2 и 3 соответствует открытому состоянию (прямой проводимости).

  • В точке 2 через прибор протекает минимальный удерживающий ток Ih.

  • Участок между 0 и 4 описывает режим обратного запирания прибора.

  • Участок между 4 и 5 — режим обратного пробоя.

Вольтамперная характеристика симметричных тиристоров отличается от приведённой на рис. 2 тем, что кривая в третьей четверти графика повторяет участки 0—3 симметрично относительно начала координат.

По типу нелинейности ВАХ тиристор относят к S-приборам.