
- •1.1. Основное уравнение гидростатики
- •1.2. Абсолютное и избыточное давление, вакуум, приборы для их измерения
- •1.3. Закон Паскаля и его использование в технике
- •1.4. Сила давления жидкости на плоские стенки
- •1.5. Сила давления жидкости на криволинейные стенки. Закон Архимеда
- •1.6. Относительный покой жидкости
- •Контрольные вопросы
- •2. Гидравлика
- •2.1. Классификация жидких сред. Реологические среды
- •2.2. Поток жидкости. Геометрические элементы и гидравлические параметры потока
- •2.3. Уравнение Бернулли для элементарной струйки идеальной и вязкой жидкости
- •2.4. Уравнение Бернулли для потока вязкой жидкости. Примеры практического использования уравнения Бернулли
- •2.5. Гидравлическое сопротивление аппаратов и трубопроводов
- •2.5.1. Ламинарное движение жидкости в трубах
- •2.5.2. Турбулентное течение жидкости в трубах
- •2.5.3. График Никурадзе
- •2.5.4. Способы уменьшения гидравлических сопротивлений
- •2.5.5. Местные гидравлические сопротивления. Интерференция местных сопротивлений
- •2.6. Гидравлический расчет трубопроводов, их классификация
- •2.6.1. Расчет простых трубопроводов
- •2.6.2. Расчет сложных трубопроводов
- •2.6.3. Сифонный трубопровод
- •2.7. Особенности расчета газопровода
- •2.8. Некруглые трубопроводы
- •2.9. Определение оптимального диаметра трубопровода
- •2.10. Течение в трубах неньютоновских жидкостей
- •Контрольные вопросы
- •3. Основы динамики двухфазных потоков
- •3.1 Система «жидкость (газ) – твердое тело»
- •3.1.1. Характеристика зернистого слоя
- •3.1.2. Движение жидкости через неподвижный зернистый слой
- •3.1.3. Псевдоожиженный слой
- •3.1.4. Расчет скорости витания (осаждения) и уноса
- •3.1.5. Гидро- и пневмотранспорт зернистых материалов
- •Пневмотранспорт заторможенным плотным слоем
- •3.2. Система «газ (пар) – жидкость»
- •3.2.1. Пленочное течение жидкости
- •3.2.2. Образование и движение капель и газовых пузырей. Барботаж
- •3.3. Система «жидкость – жидкость»
- •Контрольные вопросы
- •4. Разделение неоднородных систем
- •4.1. Классификация неоднородных систем и методов их разделения
- •4.2. Осаждение
- •4.2.1. Разделение неоднородных систем в поле сил тяжести
- •Конструкция аппаратов гравитационного осаждения
- •4.2.2. Разделение неоднородных систем в поле центробежных сил
- •Конструкция аппаратов центробежного осаждения
- •4.2.3. Очистка газов в электрическом поле
- •Конструкции электроосадителей
- •4.3. Мокрая и инерционная очистка газовых неоднородных систем
- •4.4. Фильтрование
- •4.4.1. Основное уравнение фильтрования
- •4.4.2. Фильтрование в поле центробежных сил
- •4.4.3. Аппаратура для фильтрования
- •Очистка газов фильтрованием
- •Фильтрование жидких неоднородных систем
- •4.5. Выбор аппаратов для разделения неоднородных систем
- •Аппараты для очистки газовых неоднородных систем
- •Аппараты для разделения жидких неоднородных систем
- •4.6. Методы повышения эффективности разделения неоднородных систем
- •Контрольные вопросы
- •5. Перемешивание
- •5.1. Перемешивание в жидкой среде
- •5.1.1. Механическое перемешивание
- •Расход мощности на перемешивание
- •5.1.2. Пневматическое перемешивание
- •5.1.3. Гидравлическое перемешивание
- •Контрольные вопросы
- •6. Перемещение жидкостей
- •6.1. Классификация насосов. Элементы насосной установки
- •6.2. Основные рабочие параметры насосов
- •6.3. Лопастные насосы
- •6.3.1. Центробежные насосы
- •Основное уравнение центробежных машин (уравнение Эйлера)
- •Характеристики центробежных насосов
- •Работа центробежного насоса на сеть
- •Параллельная и последовательная работа двух центробежных насосов
- •Высота всасывания центробежных насосов. Кавитация
- •6.3.2. Осевые насосы
- •6.3.3. Вихревые насосы
- •6.4. Поршневые насосы
- •6.4.1. Производительность (подача) поршневых насосов
- •6.4.2. Процессы всасывания и нагнетания поршневых насосов
- •6.4.3. Воздушные колпаки поршневых насосов
- •6.5. Роторные насосы
- •6.5.1. Шестеренные насосы
- •6.5.2. Винтовые насосы
- •6.5.3. Пластинчатые насосы
- •6.5.4. Роторно-поршневые насосы
- •6.6. Характеристики объемных насосов и их работа на сеть
- •6.7. Другие типы насосов
- •6.7.1. Газлифты
- •6.7.2. Монтежю
- •6.7.3. Струйные насосы
- •6.7.4. Гидравлический таран
- •Контрольные вопросы
- •7. Сжатие и перемещение газов
- •7.1. Классификация компрессорных машин
- •7.2. Термодинамические основы сжатия газов
- •7.2.1. Процессы сжатия газа в идеальной компрессорной машине
- •7.2.2. Изотермический и адиабатный кпд компрессорной машины
- •7.3. Поршневые компрессорные машины
- •7.3.1. Производительность и коэффициент подачи
- •7.3.2. Мощность и кпд поршневых компрессорных машин
- •7.3.3. Многоступенчатое сжатие газа в компрессорной машине
- •7.4. Турбокомпрессоры
- •Контрольные вопросы
- •Оглавление
1.5. Сила давления жидкости на криволинейные стенки. Закон Архимеда
В отличие от плоской стенки, элементарные силы, действующие на элементарные площадки криволинейной стенки в различных точках, различаются не только по величине, но и по направлению. Поэтому силу гидростатического давления, действующего на криволинейную стенку, непосредственно определить невозможно, его находят через составляющие (проекции) этой силы.
Для
простоты рассмотрим цилиндрическую
поверхность аb
с
образующей, перпендикулярной к плоскости
чертежа (рис. 1.11). Жидкость действует на
стенку аb
с силой
,
а стенка аb
с такой же силой, но в обратную сторону.
Разложим эту силу
на вертикальную
и
горизонтальную
составляющие.
Далее рассмотрим условие равновесия объема жидкости, заключенного в вертикальном направлении в отсеке abcd:
(1.25)
где
– давление на свободной поверхности,
– проекция площади S
на горизонтальную (свободную) поверхность,
V
– объем жидкого тела. Объем жидкого
тела (тело давления) ограничено снизу
криволинейной поверхностью аb,
сверху – проекцией этой поверхности
на свободную поверхность cd,
а с боков – цилиндрической поверхностью,
полученной
в результате проектирования
площади S
на свободную поверхность. Необходимо
отметить, что V
не всегда представляет объем жидкости.
Рис. 1.11. Схема для определения силы давления жидкости на криволинейную (цилиндрическую) стенку
Определим
горизонтальную составляющую
.
На некотором расстоянии по горизонтали
от площади S
жидкость условно разрезаем
в
вертикальной плоскости и правую часть
отбрасываем. На вертикальную стенку
спроектируем площадь S
и получим
.
Реакцию
отброшенной части жидкости обозначим
через
.
Далее рассмотрим равновесие объема
жидкости, заключенной между плоскостями
аb
и ef.
Заметим, что сила
является силой давления
на плоскую
стенку
:
(1.26)
где
– глубина погружения центра тяжести
площади
,
– давление в центре тяжести площади
.
Полную силу находим по формуле:
(1.27)
Тогда положение силы находится графическим путем как точка пересечения направления силы с криволинейной поверхностью.
В общем случае полная сила определяется по формуле:
.
(1.28)
В
этом случае
определяется по формуле (1.25),
– по формуле (1.26). Сила
,
как и сила
,
расположена в горизонтальной плоскости
и определяется по формуле, аналогичной
(1.26).
Закон Архимеда. Рассмотрим полностью погруженное в жидкость твердое тело (рис. 1.12).
Рис. 1.12. Тело, покоящееся в жидкости
Горизонтальные
составляющие силы
и
полностью уравновешиваются. Рассмотрим
вертикальную составляющую
.
Вертикальная сила, действующая на нижнюю поверхность аbс больше вертикальной силы давления на верхнюю поверхность adc. Разность вертикальных сил, согласно формуле (1.25), получим в виде:
(1.29)
где
– объем твердого тела,
– плотность жидкости.
Итак, на тело, погруженное в жидкость, действует гидростатическая подъёмная сила, направленная вверх и численно равная силе тяжести вытесненной им жидкости. Точка приложения гидростатической подъемной силы – центр тяжести вытесненного объема жидкости.