
- •1.1. Основное уравнение гидростатики
- •1.2. Абсолютное и избыточное давление, вакуум, приборы для их измерения
- •1.3. Закон Паскаля и его использование в технике
- •1.4. Сила давления жидкости на плоские стенки
- •1.5. Сила давления жидкости на криволинейные стенки. Закон Архимеда
- •1.6. Относительный покой жидкости
- •Контрольные вопросы
- •2. Гидравлика
- •2.1. Классификация жидких сред. Реологические среды
- •2.2. Поток жидкости. Геометрические элементы и гидравлические параметры потока
- •2.3. Уравнение Бернулли для элементарной струйки идеальной и вязкой жидкости
- •2.4. Уравнение Бернулли для потока вязкой жидкости. Примеры практического использования уравнения Бернулли
- •2.5. Гидравлическое сопротивление аппаратов и трубопроводов
- •2.5.1. Ламинарное движение жидкости в трубах
- •2.5.2. Турбулентное течение жидкости в трубах
- •2.5.3. График Никурадзе
- •2.5.4. Способы уменьшения гидравлических сопротивлений
- •2.5.5. Местные гидравлические сопротивления. Интерференция местных сопротивлений
- •2.6. Гидравлический расчет трубопроводов, их классификация
- •2.6.1. Расчет простых трубопроводов
- •2.6.2. Расчет сложных трубопроводов
- •2.6.3. Сифонный трубопровод
- •2.7. Особенности расчета газопровода
- •2.8. Некруглые трубопроводы
- •2.9. Определение оптимального диаметра трубопровода
- •2.10. Течение в трубах неньютоновских жидкостей
- •Контрольные вопросы
- •3. Основы динамики двухфазных потоков
- •3.1 Система «жидкость (газ) – твердое тело»
- •3.1.1. Характеристика зернистого слоя
- •3.1.2. Движение жидкости через неподвижный зернистый слой
- •3.1.3. Псевдоожиженный слой
- •3.1.4. Расчет скорости витания (осаждения) и уноса
- •3.1.5. Гидро- и пневмотранспорт зернистых материалов
- •Пневмотранспорт заторможенным плотным слоем
- •3.2. Система «газ (пар) – жидкость»
- •3.2.1. Пленочное течение жидкости
- •3.2.2. Образование и движение капель и газовых пузырей. Барботаж
- •3.3. Система «жидкость – жидкость»
- •Контрольные вопросы
- •4. Разделение неоднородных систем
- •4.1. Классификация неоднородных систем и методов их разделения
- •4.2. Осаждение
- •4.2.1. Разделение неоднородных систем в поле сил тяжести
- •Конструкция аппаратов гравитационного осаждения
- •4.2.2. Разделение неоднородных систем в поле центробежных сил
- •Конструкция аппаратов центробежного осаждения
- •4.2.3. Очистка газов в электрическом поле
- •Конструкции электроосадителей
- •4.3. Мокрая и инерционная очистка газовых неоднородных систем
- •4.4. Фильтрование
- •4.4.1. Основное уравнение фильтрования
- •4.4.2. Фильтрование в поле центробежных сил
- •4.4.3. Аппаратура для фильтрования
- •Очистка газов фильтрованием
- •Фильтрование жидких неоднородных систем
- •4.5. Выбор аппаратов для разделения неоднородных систем
- •Аппараты для очистки газовых неоднородных систем
- •Аппараты для разделения жидких неоднородных систем
- •4.6. Методы повышения эффективности разделения неоднородных систем
- •Контрольные вопросы
- •5. Перемешивание
- •5.1. Перемешивание в жидкой среде
- •5.1.1. Механическое перемешивание
- •Расход мощности на перемешивание
- •5.1.2. Пневматическое перемешивание
- •5.1.3. Гидравлическое перемешивание
- •Контрольные вопросы
- •6. Перемещение жидкостей
- •6.1. Классификация насосов. Элементы насосной установки
- •6.2. Основные рабочие параметры насосов
- •6.3. Лопастные насосы
- •6.3.1. Центробежные насосы
- •Основное уравнение центробежных машин (уравнение Эйлера)
- •Характеристики центробежных насосов
- •Работа центробежного насоса на сеть
- •Параллельная и последовательная работа двух центробежных насосов
- •Высота всасывания центробежных насосов. Кавитация
- •6.3.2. Осевые насосы
- •6.3.3. Вихревые насосы
- •6.4. Поршневые насосы
- •6.4.1. Производительность (подача) поршневых насосов
- •6.4.2. Процессы всасывания и нагнетания поршневых насосов
- •6.4.3. Воздушные колпаки поршневых насосов
- •6.5. Роторные насосы
- •6.5.1. Шестеренные насосы
- •6.5.2. Винтовые насосы
- •6.5.3. Пластинчатые насосы
- •6.5.4. Роторно-поршневые насосы
- •6.6. Характеристики объемных насосов и их работа на сеть
- •6.7. Другие типы насосов
- •6.7.1. Газлифты
- •6.7.2. Монтежю
- •6.7.3. Струйные насосы
- •6.7.4. Гидравлический таран
- •Контрольные вопросы
- •7. Сжатие и перемещение газов
- •7.1. Классификация компрессорных машин
- •7.2. Термодинамические основы сжатия газов
- •7.2.1. Процессы сжатия газа в идеальной компрессорной машине
- •7.2.2. Изотермический и адиабатный кпд компрессорной машины
- •7.3. Поршневые компрессорные машины
- •7.3.1. Производительность и коэффициент подачи
- •7.3.2. Мощность и кпд поршневых компрессорных машин
- •7.3.3. Многоступенчатое сжатие газа в компрессорной машине
- •7.4. Турбокомпрессоры
- •Контрольные вопросы
- •Оглавление
2.6. Гидравлический расчет трубопроводов, их классификация
Классификация трубопроводов. Простым называется трубопровод, состоящий из одной линии труб, с одним расходом, хотя и из разного диаметра. Все остальные трубопроводы называются сложными. На рис. 2.22 представлены (из множества возможных) наиболее распространенные схемы сложных трубопроводов. Однако эти схемы необходимо рассматривать как элементы ещё более сложных схем. Например, обеспечение водой жилого дома выглядит так: разветвленная сеть в подвале дома (в каждый подъезд), разветвленная сеть в подъезде (в каждую квартиру) и разветвление в самой квартире.
Рис. 2.22. Схемы трубопроводов
Трубопроводные схемы жилых районов города и промышленных предприятий выглядят достаточно сложно.
2.6.1. Расчет простых трубопроводов
На рис. 2.23 представлена схема простого трубопровода постоянного диаметра. На схеме определим два характерных сечения и для них напишем уравнение Бернулли. В нашем случае таковыми являются сечения 0–0 и 1–1:
(2.65)
Рис. 2.23. Схема простого трубопровода
Рассмотрим
члены уравнения (2.65). Обозначим
давления
,
– скорость опускания уровня жидкости
в
резервуаре и
– скорость движения жидкости в
трубопроводе. Тогда можно записать:
(2.66)
Уравнение (2.66) можно представить в виде:
(2.67)
где
Следовательно, напор Н
идет на создание кинетической энергии
потока (первый член правой части уравнения
(2.67)) жидкости и на преодоление
гидравлических сопротивлений потока.
При расчете простых трубопроводов встречается три основных типа задач:
1.
Известны
Необходимо найти Н.
2.
Известны
Необходимо найти
3.
Известны
Необходимо найти d.
Задача № 1. Эта задача решается путем непосредственного использования уравнения (2.66). Скорость определяется из уравнения расхода:
(2.68)
Далее
определяем
.
Таким образом, для определения потребного напора известны все необходимые параметры потока. Эта так называемая прямая задача.
Если простой трубопровод составной, то необходимо использовать ещё уравнение неразрывности:
(2.69)
Задача № 2. Необходимо найти пропускную способность трубопровода. Воспользуемся зависимостями (2.66) и (2.68) и найдем :
(2.70)
Однако прямое определение по формуле (2.70) невозможно. Коэффициенты сопротивлений и зависят от режима течения жидкости в трубопроводе, а режим зависит от расхода, расход таким образом искомая величина:
Решение
находим методом попыток. Если предположить,
что течение развитое турбулентное,
имеет место квадратичный закон
сопротивления, тогда можно принимать
и
.
Значение
для квадратичной зоны сопротивления
меняется в пределах
По уравнению (2.70) находим в первом приближении. По найденному определяется Re в первом приближении, а по Re – уже более точное значение . Снова подставляют полученное в уравнение (2.70) и находим во втором приближении. Если расхождение расходов велико, то расчет продолжают в том же порядке. Приемлемая точность обычно достигается после двух или трех приближений. Возможен графический метод решения задачи. Для составного трубопровода расчет аналогичен.
Задача № 3. Уравнения (2.66) или (2.70) относительно d не решаются. Поэтому задачу решаем приближенно, методом попыток, принимая в первом приближении, как и ранее, квадратичный закон распределения. Для этой зоны имеем:
(2.71)
По
формуле (2.71) строим график
Из этого графика определим
,
отвечающий заданному расходу
(рис. 2.24).
Рис. 2.24. Зависимость диаметра трубопровода от расхода
В случае составного трубопровода задача решается в том случае, если неизвестен диаметр d одного лишь участка.
Задачи 2 и 3 называются в гидравлике обратными задачами.