
- •Глава 1 Справочная информация теоретического характера
- •§ 1. Логические основы школьного курса планиметрии
- •1.1. Справочная информация
- •1.2. Вопросы для самопроверки
- •1.3. Темы для сообщений и рефератов
- •§ 2. Основные понятия планиметрии
- •2.1. Справочная информация
- •2.2. Вопросы для самопроверки
- •2.3. Темы для сообщений и рефератов
- •§ 3. Важнейшие теоремы и формулы школьного курса планиметрии
- •3.1. Справочная информация
- •Основные теоремы планиметрии и следствия из них
- •1. Теоремы о прямых (параллельность и перпендикулярность на плоскости)
- •2 Теоремы об углах. Углы в треугольнике. Вписанные в окружность углы
- •3. Основные теоремы о треугольнике
- •4. Пропорциональность и подобие на плоскости
- •5. Основные геометрические неравенства
- •6. Основные геометрические места точек на плоскости
- •7. Теоремы о четырёхугольниках
- •8. Теоремы об окружностях
- •9. Векторы
- •Основные формулы планиметрии
- •Формулы аналитической планиметрии
- •3.2. Вопросы для самопроверки
- •3.3. Задачи теоретического характера для самостоятельного решения и разбора на факультативных занятиях
- •Глава 2 Практикум по решению задач
- •§ 1. Использование формул планиметрии и тригонометрии
- •1.1. Задачи на треугольник
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.2. Задачи на равнобедренный и равносторонний треугольники
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.3. Задачи на прямоугольный треугольник
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.4. Задачи на трапецию
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.5. Задачи на параллелограмм
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.6. Задачи на ромб
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.7. Задачи на прямоугольник
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.8. Задачи на квадрат
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.10. Задачи на окружность и круг
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •§ 2. Основные идеи и методы решения планиметрических задач
- •2.1. Задачи на вписанную в треугольник окружность
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.2. Задачи на свойства параллельных прямых
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.3. Задачи на пропорциональные отрезки
- •Примеры решения задач
- •Задачи для самостоятельной работы
- •2.4. Задачи на свойства биссектрисы треугольника
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.5. Задачи на подобие
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.6. Задачи на вписанные и описанные четырёхугольники
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.7. Задачи на вписанные углы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.8. Задачи на пропорциональность отрезков хорд и секущих окружности
- •Примеры решения задач
- •Задача для самостоятельного решения
- •2.9. Задачи на использование дополнительных построений, вспомогательных фигур и геометрических преобразований
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.10. Задачи, решаемые координатным и векторным методами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.11. Разные задачи Примеры решения задач
- •Задачи для самостоятельного решения
2 Теоремы об углах. Углы в треугольнике. Вписанные в окружность углы
Свойство вертикальных углов. Вертикальные углы равны (рис. 66): ? = ?.
Рис. 66. Свойство углов равнобедренного треугольника. В равнобедренном треугольнике углы при основании равны. Верна и обратная теорема: если в треугольнике два угла равны, то он равнобедренный (рис. 67): АВ = ВС ? ?А = ?С.
Рис. 67. Теорема о сумме углов в треугольнике. Сумма внутренних углов треугольника равна 180° (рис. 68): ? + ? + ? = 180°.
Рис. 68. Теорема о сумме углов в выпуклом n-угольнике. Сумма углов выпуклого n-угольника равна 180°?(n – 2) (рис. 69).
Рис. 69. Пример:?1 + ?2 + ?3 + ?4 + ?5 = 180°?(5–2) = 540°. Теорема о внешнем угле треугольника. Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним (рис. 70): ? = ? + ?.
Рис. 70. Теорема о величине вписанного в окружность угла. Угол, вписанный в окружность, равен половине соответствующего q центрального угла (рис. 71):
Рис. 71.
3. Основные теоремы о треугольнике
Признаки равенства треугольников. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис. 72).
Рис. 72. ?ABC = ?A1B1C1 т. к. АB = А1В1, АС = А1С1 и ?A = ?A1. Если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 73).
Рис. 73. ?ABC = ?A1B1C1 т. к. АC = А1C1, ?A = ?A1, ?C = ?C1. Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны (рис. 74).
Рис. 74. ?ABC = ?A1B1C1 т. к. АB = А1B1, АC = А1C1, BC = B1C1. Признаки равенства прямоугольных треугольников. Если гипотенуза и катет одного треугольника соответственно равны гипотенузе и катету другого треугольника, то такие треугольники равны (рис. 75).
Рис. 75. ?ABC = ?A1B1C1 т. к. ?А = ?А1 = 90°; BC = B1C1; AB = A1B1. Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие треугольники равны (рис. 76).
Рис. 76. ?АВС = ?А1В1С1, т. к. АВ = А1В1, ?А = ?A1 a ?С = ?С1 = 90°. Свойство медианы равнобедренного треугольника. В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой (рис. 77).
Рис. 77. (АВ = ВС, АМ = МС) ? (?АВМ = ?МВС, ?АМВ = ?ВМС = 90°). Свойство средней линии треугольника. Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна её половине (рис. 78).
Рис. 78. EF||AC, EF = 1/2АС, т. к. АЕ = ЕВ и BF = FC. Теорема синусов. Стороны треугольника пропорциональны синусам противолежащих углов (рис. 79).
Рис. 79.
Теорема косинусов. Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними (рис. 80).
Рис. 80. а2= b2+ с2– 2bc cos ?. Теорема Пифагора (частный случай теоремы косинусов). В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов (рис. 81).
Рис. 81. с2= а2+ b2.