
- •Глава 1 Справочная информация теоретического характера
- •§ 1. Логические основы школьного курса планиметрии
- •1.1. Справочная информация
- •1.2. Вопросы для самопроверки
- •1.3. Темы для сообщений и рефератов
- •§ 2. Основные понятия планиметрии
- •2.1. Справочная информация
- •2.2. Вопросы для самопроверки
- •2.3. Темы для сообщений и рефератов
- •§ 3. Важнейшие теоремы и формулы школьного курса планиметрии
- •3.1. Справочная информация
- •Основные теоремы планиметрии и следствия из них
- •1. Теоремы о прямых (параллельность и перпендикулярность на плоскости)
- •2 Теоремы об углах. Углы в треугольнике. Вписанные в окружность углы
- •3. Основные теоремы о треугольнике
- •4. Пропорциональность и подобие на плоскости
- •5. Основные геометрические неравенства
- •6. Основные геометрические места точек на плоскости
- •7. Теоремы о четырёхугольниках
- •8. Теоремы об окружностях
- •9. Векторы
- •Основные формулы планиметрии
- •Формулы аналитической планиметрии
- •3.2. Вопросы для самопроверки
- •3.3. Задачи теоретического характера для самостоятельного решения и разбора на факультативных занятиях
- •Глава 2 Практикум по решению задач
- •§ 1. Использование формул планиметрии и тригонометрии
- •1.1. Задачи на треугольник
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.2. Задачи на равнобедренный и равносторонний треугольники
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.3. Задачи на прямоугольный треугольник
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.4. Задачи на трапецию
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.5. Задачи на параллелограмм
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.6. Задачи на ромб
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.7. Задачи на прямоугольник
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.8. Задачи на квадрат
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.10. Задачи на окружность и круг
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •§ 2. Основные идеи и методы решения планиметрических задач
- •2.1. Задачи на вписанную в треугольник окружность
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.2. Задачи на свойства параллельных прямых
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.3. Задачи на пропорциональные отрезки
- •Примеры решения задач
- •Задачи для самостоятельной работы
- •2.4. Задачи на свойства биссектрисы треугольника
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.5. Задачи на подобие
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.6. Задачи на вписанные и описанные четырёхугольники
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.7. Задачи на вписанные углы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.8. Задачи на пропорциональность отрезков хорд и секущих окружности
- •Примеры решения задач
- •Задача для самостоятельного решения
- •2.9. Задачи на использование дополнительных построений, вспомогательных фигур и геометрических преобразований
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.10. Задачи, решаемые координатным и векторным методами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.11. Разные задачи Примеры решения задач
- •Задачи для самостоятельного решения
Задачи для самостоятельного решения
129. Четырёхугольник ABCD описан около окружности с центром О. Найдите сумму углов АОВ и COD. (1) 130. Определите площадь круга, вписанного в прямоугольную трапецию с основаниями а и b. (2) 131. Длины боковых сторон трапеции равны 3 и 5. Известно, что в трапецию можно вписать окружность. Средняя линия трапеции делит её на две части, отношение площадей которых равно 5/11. Найдите длины оснований трапеции. (3)
2.7. Задачи на вписанные углы
Вписанный в окружность угол равен половине центрального угла, опирающегося на ту же дугу.
Примеры решения задач
132. Найдите ?ТОК, если О – центр окружности и ?ТЕК = 120° (рис. 190).(1)
Рис. 190. Решение. Так как вписанный угол ТЕК равен половине центрального угла, опирающегося на ту же дугу, то
Ответ: 120° 133. Дан правильный 30-угольник А1А2 ... А30 с центром О. Найдите угол между прямыми ОА3 и А1А4 (рис. 191). (2)
Рис. 191. Решение. Так как многоугольник А1А2 ... A30 – правильный, то ?А3ОА4 = 360°/30 = 12°. Далее, ?А3А1А4 = 1/2 ?А3ОА4 = 6° (вписанный угол, опирающийся на дугу А3А4). ?А1ОА3 = 2 ? 12° = 24°;
Требуемый нам угол х является внешним углом к треугольнику А3А1В. Так как внешний угол треугольника равен сумме внутренних углов, с ним не смежных, то х = 6° + 78° = 84°. Ответ: 84°. 134. В окружность вписан четырёхугольник ABCD, диагонали которого взаимно перпендикулярны и пересекаются в точке Е. Прямая, проходящая через точку Е и перпендикулярная к АВ, пересекает сторону CD в точке М. Доказать, что ЕМ – медиана треугольника CED, и найти её длину, если AD = 8 см, АВ = 4 см и ?CDB = ? (рис. 192). (3)
Рис. 192. Решение. Обозначим через К точку пересечения прямых АВ и ЕМ. Поскольку углы CDB и CAB опираются на одну и ту же дугу ВС, то ?CAB = ?CDB = ?. Из равенств ?DCE + CDB = ?/2, ?КЕА + ?САВ = ?/2, следует, что ?DCE = ?КЕА = ?СЕМ. Но это означает, что треугольник СЕМ равнобедренный, т. е. СМ = ЕМ. Далее, ?MED = ?/2 – ?СЕМ = ?/2 – (?/2 – ?) = ?CDB. Итак, треугольник EMD равнобедренный, или DM = ЕМ. Этим доказано, что СМ = DM или что ЕМ – медиана треугольника CED. Из прямоугольного треугольника ABE находим АЕ = АВ ? cos?ЕАВ = АВ ? cos?CAB = 4 ? cos ?. Далее, из прямоугольного треугольника AED по теореме Пифагора получаем
и, наконец,
Ответ:
Задачи для самостоятельного решения
135. Окружности с центрами О и О1 касаются внутренним образом. Найдите угол В (рис. 193). (1)
Рис. 193. 136. Точка находится внутри круга радиуса 6 и делит проходящую через неё хорду на отрезки длиной 5 и 4. Найдите расстояние от точки до окружности. (2) 137. а) Докажите, что
(рис. 194);
Рис. 194. б) докажите, что
(рис. 195). (3)
Рис. 195. 138. Диагональ BD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Вычислить длину диагонали АС, если BD = 2, AB = 1, ?ABD:?DBC = 4:3. (3)