- •Глава 1 Справочная информация теоретического характера
- •§ 1. Логические основы школьного курса планиметрии
- •1.1. Справочная информация
- •1.2. Вопросы для самопроверки
- •1.3. Темы для сообщений и рефератов
- •§ 2. Основные понятия планиметрии
- •2.1. Справочная информация
- •2.2. Вопросы для самопроверки
- •2.3. Темы для сообщений и рефератов
- •§ 3. Важнейшие теоремы и формулы школьного курса планиметрии
- •3.1. Справочная информация
- •Основные теоремы планиметрии и следствия из них
- •1. Теоремы о прямых (параллельность и перпендикулярность на плоскости)
- •2 Теоремы об углах. Углы в треугольнике. Вписанные в окружность углы
- •3. Основные теоремы о треугольнике
- •4. Пропорциональность и подобие на плоскости
- •5. Основные геометрические неравенства
- •6. Основные геометрические места точек на плоскости
- •7. Теоремы о четырёхугольниках
- •8. Теоремы об окружностях
- •9. Векторы
- •Основные формулы планиметрии
- •Формулы аналитической планиметрии
- •3.2. Вопросы для самопроверки
- •3.3. Задачи теоретического характера для самостоятельного решения и разбора на факультативных занятиях
- •Глава 2 Практикум по решению задач
- •§ 1. Использование формул планиметрии и тригонометрии
- •1.1. Задачи на треугольник
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.2. Задачи на равнобедренный и равносторонний треугольники
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.3. Задачи на прямоугольный треугольник
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.4. Задачи на трапецию
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.5. Задачи на параллелограмм
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.6. Задачи на ромб
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.7. Задачи на прямоугольник
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.8. Задачи на квадрат
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.10. Задачи на окружность и круг
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •§ 2. Основные идеи и методы решения планиметрических задач
- •2.1. Задачи на вписанную в треугольник окружность
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.2. Задачи на свойства параллельных прямых
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.3. Задачи на пропорциональные отрезки
- •Примеры решения задач
- •Задачи для самостоятельной работы
- •2.4. Задачи на свойства биссектрисы треугольника
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.5. Задачи на подобие
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.6. Задачи на вписанные и описанные четырёхугольники
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.7. Задачи на вписанные углы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.8. Задачи на пропорциональность отрезков хорд и секущих окружности
- •Примеры решения задач
- •Задача для самостоятельного решения
- •2.9. Задачи на использование дополнительных построений, вспомогательных фигур и геометрических преобразований
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.10. Задачи, решаемые координатным и векторным методами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.11. Разные задачи Примеры решения задач
- •Задачи для самостоятельного решения
1.6. Задачи на ромб
Для ромба характерны все формулы для параллелограмма, только а = b.
Примеры решения задач
56. Тупой угол ромба в 5 раз больше его острого угла. Во сколько раз сторона ромба больше радиуса вписанной в него окружности (рис. 154)? (1)
Рис. 154. Решение. Пусть сторона ромба равна а. В ромбе, как и во всяком параллелограмме, сумма внутренних односторонних углов BAD (обозначим этот угол ?А) и ABC (обозначим его ?В) равна 180°. Получаем систему уравнений:
Радиус r вписанной окружности, как видно из рисунка, равен половине высоты ВН ромба (2r = MN = ВН). Но из ?АВН следует, что
Ответ: в 4 раза. 57. Высота ромба равна 12, а одна из его диагоналей равна 15. Найдите площадь ромба (рис. 155). (2)
Рис. 155. Решение. Для нахождения площади ромба нам нужно знать длину стороны ромба и хотя бы один из его углов. Пусть АВ = а; ?А = ?. Проведём высоту ВН. Из ?АВН находим, что ВН = AB ? sin ?; 12 = asin ?. Из ?ABD по теореме косинусов BD2= АВ2+ AD2– 2AB ? AD ? cos ?; 152= а2 + а2– 2 ? a ? acos ?; 225 = 2а2(1 – cos ?). Получаем систему уравнений:
Делим первое уравнение на второе:
Ответ: 150.
Задачи для самостоятельного решения
58. Диагональ ромба равна его стороне, ее длина 10 см. Найдите вторую диагональ и углы ромба. (1) 59. В ромб, сторона которого 20 см, вписан круг. Найти площадь круга, если одна диагональ ромба больше другой в 4/3 раза. (2) 60. В ромб с острым углом 30° вписан круг, площадь которого равна Q. Найдите площадь ромба. (2)
1.7. Задачи на прямоугольник
Для прямоугольника справедливы все формулы для параллелограмма, только угол между сторонами равен 90°. Поэтому S = ab = 1/2d2d2 sin?.
Примеры решения задач
61. Прямоугольник вписан в окружность радиуса 5 см. Одна из сторон равна 8 см. Найдите другие стороны прямоугольника (рис. 156). (1)
Рис. 156. Решение. Очевидно, что центр описанной около прямоугольника окружности является точкой пересечения диагоналей прямоугольника. Из рисунка видно, что ОВ = 5, BE = BC/2 = 8/2 = 4. Тогда по теореме Пифагора находим:
Ответ: 6 см; 8 см; 6 см. 62. Стороны прямоугольника 5 и 4 см. Биссектрисы углов, прилежащих к большей стороне, делят противолежащую сторону на 3 части. Найдите длины этих частей (рис. 157). (2)
Рис. 157. Решение. Проведем в прямоугольнике ABCD биссектрисы AM и DK (см. рис. 157). Получим:?ВАМ = 1/2 ?BAD = 1/2 ?90° = 45°. Отсюда следует, что ?АВМ – равнобедренный (?ВMA = 45°) и, значит, ВМ = АВ = 4. МС = ВС – ВМ = 5–4 = 1. Очевидно, что ВК = МС = 1; КМ = ВС – ВК – МС = 5–1 – 1 = 3. Ответ: 1; 3; 1. 63. Из всех прямоугольников, вписанных в полукруг, найти прямоугольник наибольшей площади (рис. 158). (3)
Рис. 158. Решение. Обозначив ?АОВ =?, получим: АВ = R sin ?, АО = R cos ?, S = AB ? AD = AB ? 2AO = 2R2sin ? ? cos ?, 0° < ? < 90°. Воспользуемся формулой синуса двойного аргумента и будем иметь: S = R2sin2?. Так как sin2? ? 1, то S максимальна при условии sin2? = 1, т. е. когда 2? = 90°, ? = 45°. При этом S = R2. Стороны прямоугольника при этом будут равны
Ответ:
