
- •Глава 1 Справочная информация теоретического характера
- •§ 1. Логические основы школьного курса планиметрии
- •1.1. Справочная информация
- •1.2. Вопросы для самопроверки
- •1.3. Темы для сообщений и рефератов
- •§ 2. Основные понятия планиметрии
- •2.1. Справочная информация
- •2.2. Вопросы для самопроверки
- •2.3. Темы для сообщений и рефератов
- •§ 3. Важнейшие теоремы и формулы школьного курса планиметрии
- •3.1. Справочная информация
- •Основные теоремы планиметрии и следствия из них
- •1. Теоремы о прямых (параллельность и перпендикулярность на плоскости)
- •2 Теоремы об углах. Углы в треугольнике. Вписанные в окружность углы
- •3. Основные теоремы о треугольнике
- •4. Пропорциональность и подобие на плоскости
- •5. Основные геометрические неравенства
- •6. Основные геометрические места точек на плоскости
- •7. Теоремы о четырёхугольниках
- •8. Теоремы об окружностях
- •9. Векторы
- •Основные формулы планиметрии
- •Формулы аналитической планиметрии
- •3.2. Вопросы для самопроверки
- •3.3. Задачи теоретического характера для самостоятельного решения и разбора на факультативных занятиях
- •Глава 2 Практикум по решению задач
- •§ 1. Использование формул планиметрии и тригонометрии
- •1.1. Задачи на треугольник
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.2. Задачи на равнобедренный и равносторонний треугольники
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.3. Задачи на прямоугольный треугольник
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.4. Задачи на трапецию
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.5. Задачи на параллелограмм
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.6. Задачи на ромб
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.7. Задачи на прямоугольник
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.8. Задачи на квадрат
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •1.10. Задачи на окружность и круг
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •§ 2. Основные идеи и методы решения планиметрических задач
- •2.1. Задачи на вписанную в треугольник окружность
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.2. Задачи на свойства параллельных прямых
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.3. Задачи на пропорциональные отрезки
- •Примеры решения задач
- •Задачи для самостоятельной работы
- •2.4. Задачи на свойства биссектрисы треугольника
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.5. Задачи на подобие
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.6. Задачи на вписанные и описанные четырёхугольники
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.7. Задачи на вписанные углы
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.8. Задачи на пропорциональность отрезков хорд и секущих окружности
- •Примеры решения задач
- •Задача для самостоятельного решения
- •2.9. Задачи на использование дополнительных построений, вспомогательных фигур и геометрических преобразований
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.10. Задачи, решаемые координатным и векторным методами
- •Примеры решения задач
- •Задачи для самостоятельного решения
- •2.11. Разные задачи Примеры решения задач
- •Задачи для самостоятельного решения
Задачи для самостоятельного решения
43. Найдите площадь равнобокой трапеции, если ее основания равны 12 и 4 см, а боковая сторона образует с одним из оснований угол в 45°. (1) 44. Меньшее основание равнобедренной трапеции равно высоте и равно h. Острый угол трапеции равен 30°. Найдите периметр трапеции. (1) 45. Длины параллельных сторон трапеции равны 25 и 4, а длины боковых сторон равны 20 и 13. Найдите высоту трапеции. (2) 46. Основания трапеции равны а и b, боковые стороны равны с. Найдите длину диагонали трапеции. (2) 47. Определите длину высоты трапеции, если её основания равны 28 и 16 см, а боковые стороны равны 25 и 17 см. (2) 48. Найдите площадь равнобедренной трапеции, у которой высота равна 10, а диагонали взаимно перпендикулярны. (2) 49. В трапецию ABCD с основаниями AD и ВС и с боковыми сторонами АВ и CD вписана окружность с центром О. Найти площадь трапеции, если угол DAB прямой, ОС = 2 и OD = 4. (3)
1.5. Задачи на параллелограмм
Площадь параллелограмма со сторонами а, b и углом ? между ними вычисляется по формуле S = absin ?. Можно также воспользоваться формулой S = 1/2 d1d2 sin? где d1, d2 – длины диагоналей, ? – угол между ними (или S = aha, где ha – высота). Если в параллелограмм можно вписать окружность, то это ромб. Если около параллелограмма можно описать окружность, то это прямоугольник.
Примеры решения задач
50. В параллелограмме сумма двух противолежащих углов равна 132°. Найдите градусную меру каждого из углов параллелограмма (рис. 151). (1)
Рис. 151. Решение. По условию задачи ?А + ?С = 132°. Но, так как в параллелограмме противоположные углы равны, то ?А = ?С = 132°/2 = 66°. Учтём также, что ?А + ?В = ?С + ?D = 180°. Имеем:?В = ?D = 180° – 66° = 114°. Ответ: 66°, 114°, 66°, 114°. 51. Одна из диагоналей параллелограмма разбивает его на два равносторонних треугольника со стороной а. Найдите длину другой диагонали (рис. 152). (1)
Рис. 152. Решение. Раз ?ABD и ?BCD – равносторонние, то углы ?BAD = ?BCD = 60°, тогда ?ABC = 120°. По теореме косинусов из треугольника ABC получаем:
Ответ:
52. Найдите площадь параллелограмма, если его диагонали 3 и 5, а острый угол параллелограмма 60° (рис. 153). (2)
Рис. 153. Решение. Обозначим стороны параллелограмма: AD = а, АВ = b, ?BAD = 60°. BD = 3; АС = 5. Очевидно, что ?ABC = 120°. По теореме косинусов из треугольников ABD и АСВ имеем:
Вычитая первое уравнение из второго, получим 2ab = 16. Тогда площадь будет равна:
Ответ:
Задачи для самостоятельного решения
53. В параллелограмме с периметром 32 см проведены диагонали. Разность между периметрами двух смежных треугольников равна 8 см. Найдите длины сторон параллелограмма. (1) 54. В параллелограмме ABCD длина диагонали BD, перпендикулярной стороне АВ, равна 6. Длина диагонали АС равна 2?22. Найдите длину стороны AD. (1) 55. Параллелограмм ABCD, у которого АВ = 153, AD = 180, BE = 135 (BE – высота), разделен на три одинаковые по площади фигуры прямыми, перпендикулярными AD. На каком расстоянии от точки А находятся точки пересечения этих перпендикуляров с AD? (2)