Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Круглов О В. лекции Основы1.doc
Скачиваний:
3
Добавлен:
01.05.2025
Размер:
18.53 Mб
Скачать

4.4.3.4 Газоанализаторы на основе оптико-акустического эффекта

Оптические методы газового анализа принадлежат к числу наиболее избирательных и чувствительных. Одно из первых мест среди них в этом отношении занимает оптико-акустический метод, избирательность которого, в противоположность обычным спектроскопическим методам, достигается без спектрального разложения, за счет применения селективных оптико-акустических приемников, использующих специфичность инфракрасных спектров поглощения газообразных, парообразных и жидких веществ.

Оптико-акустический эффект был открыт в 1880 году Беллом, Тинделем и Рентгеном. Этот эффект состоит в следующем. Если в сосуд, содержащий газ, способный поглощать инфракрасное излучение, направлять прерываемый с некоторой частотой поток излучения, то в газе возникает пульсация давления, субъективно воспринимаемая как звук, если частота прерывания имеет соответствующую величину. Пульсация давления происходит из-за того, что молекулы газа, поглощая кванты падающего излучения, приходят в возбужденное состояние, а затем энергия возбуждения их колебательно-вращательных степеней свободы переходит, в результате неупругих ударений между молекулами, в энергию поступательного движения последних, т.е. в тепло, соответствующее повышению давления.

Оптико-акустический метод весьма универсален: он позволяет анализировать все газообразные вещества, за исключением одноэлементных.

Оптико-акустический метод и первый лабораторный образец оптико-акустического газоанализатора были разработаны в СССР М.Л. Вейнгеровым.

Оптико-акустический метод основывается на нескольких явлениях, главными из которых являются процессы поглощения прерывистого инфракрасного излучения и процессы преобразования энергии акустических колебаний в электрическое напряжение.

В основу разработки оптико-акустических газоанализаторов была положена оптическая схема измерения, основанная на дифференциальном методе. Сущность всякого дифференциального метода измерения сводится к определению разности значений измеряемой величины и величины известной, служащей мерой сравнения.

Схема оптико-акустического газоанализатора

Оптико-акустический газоанализатор [10] с дифференциальной оптической схемой состоит, в основном, из двух идентичных оптических каналов, дифференциального фотоприемника и двух источников инфракрасного излучения 1 (рис. 35), излучение от которых направляется с помощью вогнутых зеркал 2 в оптические каналы. В оптические каналы системы поступает как прямое излучение, так и излучение, отражаемое зеркалами. Потоки излучения прерываются обтюратором 4 с частотой несколько герц. Прерывание происходит всегда в одной и той же фазе. 9, 10 - лучеприемные цилиндры лучеприемного устройства; 11 - мерная камера с конденсаторным микрофоном. Светлые стрелки соответствуют поглощению сопутствующих (неопределяемых) компонентов контролируемой газовой смеси, темные - поглощению компонента, концентрация которого определяется.

Рисунок 115. Дифференциальная оптическая схема оптико-акустического газоанализатора: 1 – излучатели; 2 - отражатели; 3 - двигатель модулятора; 4 - диск модулятора; 5 - рабочая камера; 6 - сравнительная камера; 7, 8 - фильтровые камеры;

В первом канале системы находится рабочая камера 5, через которую непрерывно протекает газовая смесь. Симметрично, в левом канале расположена сравнительная камера 6, которую обычно заполняют азотом или чистым воздухом и герметически закрывают. Обе эти камеры именуют газовыми. На пути потоков излучения, за рабочей 5 и сравнительной 6 газовыми камерами, могут быть расположены так называемые фильтровые камеры 7, 8.

Пройдя газовые 5, 6 и фильтровые 7, 8 камеры, оба потока излучения попадают в лучеприемное устройство 9,10,11. Оно состоит из двух камер, называемых иногда лучеприемными цилиндрами 9, 10, в которых поглощаются потоки излучения, и мерной камеры 11, разделенной упругой мембраной микрофона на две половины, каждая из которых соединена с соответствующим цилиндром. Лучеприемные цилиндры 9, 10 герметически закрыты окнами, пропускающими инфракрасное излучение. Лучеприемное устройство (цилиндры и мерную камеру) заполняют газовой смесью, состоящей из измеряемого компонента и азота или воздуха.

Поток инфракрасного излучения при прохождении через рабочую газовую камеру 5 частично поглощается поступающей на анализ газовой смесью, в то время как в сравнительной камере 6 поглощения не происходит. Таким образом, в лучеприемные цилиндры 9, 10 лучеприемного устройства по двум каналам поступают потоки излучения, разность значения которых зависит от содержания измеряемого газа, протекающего через рабочую камеру. Под воздействием прерывистого излучения, поступающего в лучеприемные цилиндры, в последних возникают периодические колебания температуры заполняющего их газа и, соответственно, его давления. Давление газа преобразуется конденсаторным микрофоном, установленным в мерной камере лучеприемного устройства, в напряжение переменного тока, которое усиливается и регистрируется.

Чтобы уменьшить влияние на показания газоанализатора изменения содержания в анализируемой газовой смеси неопределяемых компонентов, ими заполняют фильтровые камеры 7, 8. Часть энергии излучения, соответствующая полосам поглощения неопределяемых компонентов, поглощается в фильтровых камерах обоих каналов и в лучеприемное устройство не поступает.

Оптико-акустические газоанализаторы основаны на одновременном использовании ряда физических явлений, главными из которых являются:

1) избирательное поглощение инфракрасного потока излучения большинством газов и паров, зависящее от толщины слоя газа, в котором происходит поглощение;

2) возбуждение акустических колебаний в замкнутом объеме, заполненном поглощающим газом, под воздействием модулированного с определенной частотой потока инфракрасного излучения.