
- •Содержание
- •1 Нефтегазопромысловая геология как наука, ее цели, задачи, средства изучения
- •Цели и задачи нефтегазопромысловой геологии
- •Методы получения информации
- •1.2.3 Гидродинамические методы
- •1.2.4 Наблюдение за работой добывающих и нагнетательных скважин
- •1.3 Методы анализа и обобщения исходной информации
- •Цели и задачи нефтегазопромысловой геологии.
- •2 Изучение внешних форм залежей углеводородов
- •2.1 Общие сведения
- •2.2 Изучение структурных поверхностей, ограничивающих залежь
- •2.3 Изучение дизъюнктивных нарушений
- •2.4 Изучение границ залежи, связанных с литологическим или стратиграфическим выклиниванием пласта – коллектора
- •2.5 Определение границ залежи, обусловленных положением внк (гнк)
- •3 Изучение внутреннего строения залежей углеводородов и свойств пород – коллекторов
- •3.1 Понятие о внутреннем строении залежей углеводородов
- •3.2 Емкостные свойства пород – коллекторов
- •3.2.1 Пористость пород – коллекторов
- •Водо – нефте – газонасыщенность пород – коллекторов
- •3.2.3 Проницаемость пород - коллекторов
- •Детальная корреляция разрезов скважин при изучении
- •3.3.1 Задачи корреляции разрезов скважин
- •3.3.2 Методические приемы детальной корелляции
- •3.4 Геологическая неоднородность объектов разработки
- •Геологическая неоднородность объектов разработки.
- •4 Свойства пластовых флюидов
- •4.1 Физико – химические свойства нефти
- •4.1.1 Фракционный состав нефти
- •4.2 Состав и свойства углеводородных газов
- •4.2.1 Физические свойства газов
- •4.3 Пластовые воды нефтяных и газовых месторождений
- •4.3.1 Химический состав пластовых вод
- •4.3.2 Физические свойства пластовых вод
- •Режим растворенного газа;
- •Гравитационный режим.
- •5.2 Режимы нефтяных залежей
- •5.2.1 Водонапорный режим нефтяной залежи
- •5.2.2 Упруговодонапорный режим нефтяной залежи
- •5.2.3 Газонапорный режим
- •5.2.4 Режим растворенного газа
- •5.2.5 Гравитационный режим
- •5.2.6 Смешанный режим
- •5.3 Режимы газовых и газоконденсатных месторождений
- •5.3.1 Газовый режим
- •5.3.2 Газоупруговодонапорный режим
- •5.4 Типы залежей углеводородов
- •5.5 Термобарическая характеристика залежей углеводородов
- •5.6 Продуктивность скважин и залежей
- •5.7 Законы фильтрации жидкости и газа в пласте
- •6.2 Категории запасов и ресурсов углеводородов
- •7 Подсчет геологических запасов нефти
- •7.1 Объемный метод
- •7.2 Методы материального баланса
- •7.3 Статистический метод.
- •8 Методы подсчета извлекаемых запасов нефти
- •8.1 Метод аналогии
- •8.2 Методы многофакторного статистического моделирования
- •8.3 Эмпирический (покоэффициентный) метод
- •8.4 Экстраполяционные методы
- •8.5 Оценка кин при режиме растворенного газа
- •8.6 Гидродинамические методы
- •9 Подсчет запасов газа
- •9.1 Подсчет запасов растворенного в нефти газа
- •9.2 Подсчет запасов свободного газа
- •9.3 Подсчет запасов газового конденсата
- •9.4 Подсчет запасов этана, пропана, бутана, сероводорода и других полезных компонентов
- •Подсчет запасов газового конденсата.
- •10 Методы оценки ресурсов углеводородов
- •10.1 Оценка перспективных ресурсов
- •10.2 Оценка прогнозных ресурсов
- •11 Экономическая оценка поисково-разведочных работ
- •11.1 Оценка продолжительности работ
- •11.2 Расчет стоимости выполненных работ
- •11.3 Геолого-экономическая эффективность и технико-экономические показатели работ
- •12 Охрана недр и окружающей среды месторождений углеводородов
- •12.1 Охрана недр
- •12.2 Охрана окружающей среды
- •13 Обязательный комплекс сведений и документов, используемый при подсчете запасов и проектировании разработки месторождений углеводородов.
4.2.1 Физические свойства газов
Плотность газов – это масса вещества в единице объема – г/см3. Для практических целей используется относительная плотность газа по воздуху, т.е. отношение плотности газа к плотности воздуха. Иначе говоря – это показатель того, насколько газ легче или тяжелее воздуха:
,
где Рв в стандартных условиях равно1,293 кг/м3
Относительная плотность метана – 0,554, этана – 1,05, пропана – 1,55. Вот почему бытовой газ (пропан) в случае утечки скапливается в подвальных помещениях домов, образуя там взрывоопасную смесь.
Теплота сгорания или теплотворная способность – количество тепла, которое выделяется при полном сгорании 1 м3 газа. В среднем оно составляет 35160 кДж /м3 (килоджоулей на 1 м3).
Растворимость газа в нефти зависит от давления, температуры и состава нефти и газа. С ростом давления растворимость газа также возрастает. С ростом температуры растворимость газа снижается. Низкомолекулярные газы труднее растворяются в нефтях, чем более жирные.
С повышением плотности нефти, т.е. по мере роста в ней содержания высокомолекулярных соединений растворимость газа в ней снижается.
Показателем растворимости газа в нефти является газовый фактор – Г, показывающий количество газа в 1 м3 (или 1 т) дегазированной нефти. Он измеряется в м3 /м3 или м3 /т.
По этому показателю залежи делятся на:
нефтяные - Г<650 м3 /м3;
нефтяные с газовой шапкой – Г- 650 – 900 м3 /м3;
газоконденсатные - Г>900 м3/м3.
Растворимость воды в сжатом газе.
Вода растворяется в сжатом газе при высоком давлении. Это давление обусловливает возможность перемещения воды в недрах не только в жидкой, но и в газовой фазе, что обеспечивает ее большую подвижность и проницаемость через горные породы. С ростом минерализации воды растворимость ее в газе уменьшается.
Растворимость жидких углеводородов в сжатых газах.
Жидкие углеводороды хорошо растворяются в сжатых газах, создавая газоконденсатные смеси. Это создает возможность переноса (миграции) жидких углеводородов в газовой фазе, обеспечивая более легкий и быстрый процесс ее перемещения сквозь толщу горных пород.
С ростом давления и температуры растворимость жидких углеводородов в газе растет.
Сжимаемость пластовых газов – это очень важное свойство природных газов. Объем газа в пластовых условиях на 2 порядка (т.е. примерно в 100 раз) меньше, чем объем его в стандартных условиях на поверхности земли. Это происходит потому, что газ имеет высокую степень сжимаемости при высоких давлениях и температурах.
Степень сжимаемости изображается через объемный коэффициент пластового газа, который представляет отношение объема газа в пластовых условиях к объему того же количества газа при атмосферных условиях.
Газоконденсатные системы. С явлениями сжимаемости газов и растворимости в них жидких углеводородов тесно связано конденсатообразование. В пластовых условиях с ростом давления жидкие компоненты переходят в газообразное состояние, образуя «газорастворенную нефть» или газоконденсат. При падении давления процесс идет в обратном направлении, т.е. происходит частичная конденсация газа (или пара) в жидкое состояние. Поэтому при добыче газа на поверхность извлекается также и конденсат.
Содержание конденсата в добываемом газе оценивается через конденсатный фактор.
Конденсатный фактор – КФ – это количество сырого конденсата в см3, приходящегося на 1м3 отсепарированного газа.
По содержанию конденсата газы конденсатных месторождений делятся на 4 группы:
1 с низким содержанием: от 60 до 100 см3/м3;
2 со средним содержанием: от 100 до 200 см3/м3;
3 с высоким содержанием: от 200 до 400 см3/м3;
4 с очень высоким содержанием: более 400 см3/м3.
Вообще содержание конденсата достигает 1000 и более см3/м3. Например, на Карачаганакском месторождении КФ = 900 – 1130 см3/м3.
Различают сырой и стабильный конденсат. Сырой конденсат представляет собой жидкую фазу, в которой растворены газообразные компоненты. Стабильный конденсат получают из сырого путем его дегазации. Он состоит только из жидких углеводородов – пентана и высших.
В стандартных условиях газоконденсаты представляют собой бесцветные жидкости с плотностью 0,625 – 0,825 г/см3 с температурой начала кипения от 24 0С до 92 0С. Большая часть фракций имеют температуру выкипания до 250 0С.