Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
для подготовки к коллоквиуму.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.67 Mб
Скачать
  1. Вязкость

Вязкостью называют свойство жидкости оказывать сопротивление силам, вызывающим относительное перемещение ее частиц при ламинарном течении. Различают динамическую и кинематическую вязкость.

Причиной вязкостного сопротивления движению является молекулярное взаимодействие между частицами жидкости, а также взаимодействие между молекулами жидкости и движущегося в ней твердого тела.

Вязкостью обусловлена сила внутреннего трения, которая направлена в сторону, противоположную движению слоя, перемещающегося с большей скоростью, и действует на этот слой. Тем самым сила внутреннего трения вызывает сопротивление движению этого слоя жидкости.

Вязкость является основным отличием реальной жидкости от идеальной, которая вязкости не имеет.

В технической системе единиц кинематическая вязкость измеряется в стоксах (Ст) или сантистоксах. Эталоном вязкости служит дистиллированная вода, поэтому иногда вязкость измеряют в градусах Энглера

  1. Теплоемкость

Это отношение количества теплоты, подводимой к веществу, к соответствующему изменению его температуры. Теплоемкость единицы количества вещества с называют удельной теплоемкостью. В расчетах используют массовую, объемную и мольную удельные теплоемкости.

Удельная теплоемкость зависит от того, при каком процессе (изобарном, изохорном, адиабатном, политропическом, изотермическом) происходит обмен энергией между веществом и окружающей средой.

  1. Теплопроводность

Теплопроводностью называют процесс переноса энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия микрочастиц, приводящий к выравниванию температуры тела.

  1. Тепрературопроводность

Температуропроводностью называют процесс изменения температуры в окрестности данной точки в объеме вещества при изменении температурного поля (распределения температур) в этом объеме.

  1. Поверхностное натяжение

Всякая молекула, расположенная в глубине жидкости, притягивается соседними молекулами. Силы этого притяжения взаимно уравновешены и поэтому незаметны. Иная картина распределения сил у тех молекул, которые расположены не в глубине, а в поверхностном слое жидкости. Они притяги­ваются снизу и со всех сторон, но не сверху, так как там находится уже не жидкость, а другая среда. В результате поверхностный слой находится как бы в натянутом состоянии, подобно упругой пленке. Поверхностное натяжение определяется природой жидкости.

Для демонстрации действия поверхностного натяжения проведите следующий опыт. Выпив чай, оставьте на дне чашки немного жидкости с чаинками. Чайной ложкой или спичкой осторожно коснитесь поверхности жидкости. Она тотчас «поползет» вверх, увлекая за собой чаинки. Это — результат действия поверхностного натяжения.

Если две сухие стеклянные пластинки приложить одну к другой, они легко разъединяются. Если же одну из пластинок смочить водой, разъединить их будет значительно труднее. Это тоже результат действия поверхностного натяжения.

Поверхностный слой оказывает давление на всю остальную массу жидкости. Это так называемое молекулярное давление, как оказалось, значительное. В этом может заключаться одна из причин того, что капельные жидкости практически несжимаемы. Ведь обычное внешнее давление ничтожно по сравнению с тем, которое жидкость уже испытывает от действия своих же молекул — молекул поверхностного слоя. Вторая причина ее несжимаемости — малые расстояния между молекулами, половина из которых связаны внутренними межмолекулярными связями.

При создании новой поверхности жидкости требуется затрата энергии для преодоления сил внутреннего давления, которая характеризуется коэффициентом поверхностного натяжения а, измеряемым в ньютонах на метр.

Коэффициент поверхностного натяжения численно равен силе, действующей на единицу длины поверхности раздела жидкости и соприкасающейся с ней среды, а также может рассматриваться как работа, требуемая для образования единицы новой (межфазной) поверхности. С увеличением температуры жидкости поверхностное натяжение уменьшается, снижаясь до нуля в критической точке.