
- •1. Значение автоматического управления для развития химической промышленности на современном этапе
- •2. Краткий очерк истории развития систем автоматического управления
- •3. Особенности управления химико-технологическим процессом
- •4. Технико-экономический эффект управления. Роль управления в обеспечении безопасности химического производства и охраны окружающей среды
- •1. Понятие асутп.
- •2. Структура и функции асутп.
- •Классы микропроцессорных комплексов
- •1. Основные термины и определения
- •1. Иерархия управления. Назначение систем управления химическим предприятием и химико-технологическим процессом
- •2. Принципы управления
- •2.1. Управление по задающему воздействию
- •2.3. Управление по возмущающему воздействию
- •2.4. Управление по отклонению
- •2.5. Комбинированное управление
- •3. Классификация систем управления
- •3.1. По характеру изменения задающего воздействия
- •3.2. По числу контуров
- •3.3. По числу управляемых величин
- •3.4. По характеру управляющих воздействий
- •3.5. По виду зависимости установившейся ошибки от внешнего воздействия
- •3.6. По энергетическим признакам
- •3.7. По математическому описанию
- •4. Функциональная структура сар
- •1. Государственная система промышленных приборов и средств автоматизации
- •2. Основные термины и определения метрологии
- •2.1. Физические величины
- •2.2. Единицы физических величин
- •2.3. Измерения физических величин
- •2.4. Средства измерительной техники
- •2.5. Принципы, методы и методики измерений
- •2.6. Условия измерений
- •2.7. Результаты измерений физических величин
- •2.8. Погрешности измерений
- •4. Измерительные преобразователи
- •4.1. Структура измерительного преобразователя
- •4.3. Промежуточные преобразователи
- •4.3.3. Пьезоэлектрические преобразователи
- •4.3.4. Индуктивные преобразователи
- •4.3.5. Преобразователи электрических сигналов
- •4.4.3. Электропневматический преобразователь
- •4.4.4. Токовый унифицированный преобразователь
- •4.4.5. Пневматический унифицированный преобразователь
- •4.5. Аналоговые и цифровые преобразователи
- •6. Измерение давления
- •6.1. Жидкостные манометры
- •6.2. Деформационные преобразователи давления
- •7. Измерение температуры
- •7.1. Общие сведения об измерении температуры
- •7.2. Измерение температуры контактным методом
- •7.2.1. Термометры расширения
- •7.2.2. Манометрические термометры
- •7.2.3. Термоэлектрические преобразователи
- •7.2.5. Пьезоэлектрические термопреобразователи
- •7.3. Измерение температуры бесконтактным методом
- •7.3.2. Яркостные пирометры
- •7.3.3. Пирометры спектрального отношения
- •7.3.4. Пирометры полного излучения
- •8. Измерение расхода
- •8.1. Расходомеры переменного перепада давления
- •8.1.1. Измерение расхода по перепаду давлений на сужающем устройстве
- •8.1.2. Измерение расхода с помощью напорных трубок
- •8.2. Расходомеры постоянного перепада давления
- •8.3. Объемные расходомеры и счетчики
- •8.3.1. Счетчики с овальными шестернями
- •8.3.2. Ротационные счетчики
- •8.3.3. Скоростные счетчики
- •8.4. Измерение расхода на основе тепловых явлений
- •8.4.2. Термоконвективные расходомеры
- •8.4.3. Термоанемометры
- •8.5. Электромагнитные расходомеры
- •8.6. Вихревые расходомеры
- •8.7. Ультразвуковые расходомеры
- •8.8. Кориолисовы расходомеры
- •9. Измерение уровня жидкости и сыпучих тел
- •9.1. Механические уровнемеры
- •9.2. Гидростатические и пьезометрические уровнемеры
- •9.3. Кондуктометрические уровнемеры
- •9.4. Емкостные уровнемеры
- •9.5. Фотоэлектрические уровнемеры
- •9.6. Ультразвуковые уровнемеры
- •9.7. Измерение уровня с помощью радиоактивных изотопов
- •9.8. Акустические уровнемеры
- •10. Измерение состава и физико-химических свойств веществ
- •10.1. Физические газоанализаторы
- •10.1.2. Термохимические газоанализаторы
- •10.2. Измерение концентрации растворов
- •10.2.3. Денсиметрические анализаторы
- •10.2.4. Ультразвуковые анализаторы
- •10.3. Химические газовые сенсоры
- •1. Объекты управления и их основные свойства
- •1.1. Классификация объектов управления
- •1.1.1. Одномерные и многомерные объекты
- •1.1.2. Односвязные и многосвязные объекты
- •1.1.3. Линейные и нелинейные объекты
- •1.1.4. Объекты с сосредоточенными и распределенными параметрами
- •1.2. Свойства объектов управления
- •1.2.1. Емкость
- •1.2.2. Самовыравнивание
- •1.2.3. Запаздывание Транспортное запаздывание
- •2. Задачи синтеза регуляторов
- •3. Основные законы регулирования
- •3.1. Пропорциональный закон регулирования
- •3.2. Интегральный закон регулирования
- •3.3. Пропорционально-интегральный закон регулирования
- •3.4. Пропорционально-дифференциальный закон регулирования
- •3.5. Пропорционально-интегрально-дифференциальный закон регулирования
- •3.6. Позиционные регуляторы
- •3.6.1. Двухпозиционные регуляторы
- •3.6.2. Трехпозиционные регуляторы
- •1.1. Регулирование основных технологических параметров
- •1.1.1. Регулирование расхода
- •1.1.2. Регулирование устройств для перемещения жидкостей и газов
- •1.1.3. Регулирование уровня
- •1.2. Регулирование типовых тепловых процессов
- •3. Технические средства систем автоматического управления
- •3.1. Основные разновидности управляющих устройств, применяемых в системах управления хтп
- •3.2. Автоматические регуляторы прямого и непрямого действия
- •3.2.1. Регуляторы прямого действия
- •3.2.2. Регуляторы непрямого действия
- •3.4. Исполнительные устройства
- •3.4.3. Пьезокерамические исполнительные устройства
1.2.2. Самовыравнивание
Состояние объекта может быть нарушено в результате изменения материальных или энергетических потоков (притока или стока), т. е. нанесением на объект возмущающих воздействий. При этом выходные величины будут увеличиваться или уменьшаться в зависимости от того, что окажется больше — приход или расход. По способности восстанавливать равновесное состояние после нанесения на объект возмущающего воздействия объекты делят на нейтральные, устойчивые, неустойчивые.
Объекты без самовыравнивания (нейтральные)
Объекты без самовыравнивания называют нейтральными, или астатическими.
Рис. 7. Схема объекта регулирования без самовыравнивания
Выходные величины нейтральных объектов не оказывают воздействия на приток (приход) или сток (расход) вещества или энергии, т. е. в нейтральных объектах отсутствует внутренняя обратная связь. При отсутствии возмущающего воздействия нейтральный объект может находиться в состоянии равновесия при любых значениях выходной величины. При нарушении равновесия в объекте скорость изменения выходной величины пропорциональна величине возмущающего воздействия, т. е. при наличии не скомпенсированного возмущающего воздействия статический режим в нейтральном объекте не возможен.
Объекты с самовыравниванием (устойчивые)
Способность объекта прийти после нанесения возмущающего воздействия в новое установившееся состояние без вмешательства управляющего устройства называется самовыравниванием (саморегулированием).
Объекты с самовыравниванием называют статическими, или устойчивыми.
В объектах с самовыравниванием ступенчатое входное воздействие изменяет выходную величину со скоростью, постепенно уменьшающейся до нуля. Самовыравнивание является результатом действия внутренней отрицательной обратной связи в объекте (результатом влияния выходной величины объекта на приток или сток вещества или энергии). Чем больше величина самовыравнивания, тем меньше отклоняется управляемый параметр от состояния равновесия, имевшего место до возмущающего воздействия. Самовыравнивание способствует стабилизации управляемой величины в объекте и, таким образом, облегчает работу управляющего устройства.
Объекты с отрицательным самовыравниванием (неустойчивые)
В объектах с отрицательным самовыравниванием (неустойчивых объектах) изменение выходного параметра, вызванное возмущающим воздействием, приводит к еще большему неравенству между притоком и стоком вещества или энергии, что в свою очередь вызывает дальнейшее изменение выходной величины с постепенно увеличивающейся скоростью.
1.2.3. Запаздывание Транспортное запаздывание
Свойство объектов, проявляющееся в том, что между моментом нарушения равновесия (входным воздействием) и началом изменения выходной величины проходит некоторое время, называют запаздыванием. Запаздывание затрудняет регулирование процесса, и с ним нельзя не считаться.
Во многих системах автоматического управления (регулирования) приходится иметь дело со значительным запаздыванием, возникающим из-за транспортировки вещества, энергии через трубопроводы или иные элементы оборудования. Запаздывание такого типа носит название транспортного запаздывания.
Замечание
Запаздывание может появляться в результате использования в системе регулирования периодически действующих приборов, таких как газовый хроматограф, или цифровая вычислительная машина, включенная в цепь обратной связи.
Если время транспортного запаздывания
составляет
,
то выходной сигнал в течение
после
изменения входного сигнала остается
неизменным.