Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции КУХТП.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
2.58 Mб
Скачать

10.3. Химические газовые сенсоры

Химические газовые сенсоры можно рассматривать как средство диагностики окружающей среды. Именно в охране окружающей среды в будущем химическим сенсорам будет принадлежать ведущая роль. В СУ ХТП химические газовые сенсоры, подобно компьютерам, представляют собой элементы глобальной информационной сети.

Рис. 114. Принципиальная схема химического газового сенсора.

Под химическим газовым сенсором (ХГС) понимают датчик концентрации компонентов в газе. Он обладает следующими свойствами: работа в реальном масштабе времени, обратимость показаний, высокая чувствительность, миниатюрность. ХГС является своеобразным хроматографом размером с небольшую монету, «настроенным» на один или несколько компонентов.

Основными функциональными элементами химического газового сенсора, представленного на рис. 114, являются рецептор, преобразователь, электронное устройство. Рецептор 1 — элемент (материал), какие-либо свойства которого изменяются под действием анализируемого газового вещества. Такими свойствами могут быть масса, размеры, электропроводность, диэлектрическая проницаемость и др. Конструктивно рецептор представляет или тонкую газосорбирующую пленку, или оболочку оптического волокна, или миниатюрную электрохимическую ячейку. Преобразователь 2 преобразует реакцию рецептора в электрический (реже оптический) сигнал. Как правило, преобразователи представляют собой миниатюрные устройства, например, полевые транзисторы, оптические волокна, разнообразные акустические электронные устройства и др. Электронное устройство 3 считывает сигнал, поступающий с преобразователя, обрабатывает его либо в цифровой сигнал, либо пороговый «тревожный» сигнал и посылает на регистрирующее устройство 4.

В основу классификации химических газовых сенсоров положен механизм работы преобразователя, и в соответствии с этим выделяют электрохимические, электрические, оптические, акустические, магнитные, термические сенсоры.

1. Объекты управления и их основные свойства

1.1. Классификация объектов управления

Классификацию ОУ можно провести по ряду признаков: по количеству выходных величин в математической модели объекта, по классу дифференциальных уравнений, по функциональной зависимости (линейной или нелинейной) между выходными и входными величинами в статическом режиме и т. д.

1.1.1. Одномерные и многомерные объекты

Одномерный объект — объект управления, математическая модель функционирования которого содержит одну выходную величину. Входных величин может быть несколько. Можно представить, что влияние входной величины на выходную величину распространяется внутри объекта по некоторому воображаемому пути, называемому динамическим каналом.

Многомерный объект — объект управления, математическая модель функционирования которого содержит несколько выходных величин. Для многомерного объекта число уравнений вида соответствует числу выходных величин. Многомерные объекты могут быть односвязны-ми и многосвязными.

1.1.2. Односвязные и многосвязные объекты

Односвязный объект — объект управления, в математической модели функционирования которого каждая входная величина влияет только на одну входную величину. Иначе говоря, многомерный односвязный объект — это объект с независимыми выходными величинами. Такие объекты разбивают на несколько одномерных объектов и рассматривают независимо друг от друга.

Многосвязный объект — объект управления, в котором хотя бы одна входная величина влияет одновременно на несколько выходных величин. Иначе говоря, выходные величины многомерного многосвязного объекта являются взаимозависимыми, что объясняется присутствием в таких объектах перекрестных связей между параметрами.

Примером многомерного (двухмерного — по числу выходных координат) многосвязного объекта может служить реактор идеального смешения, в котором проводится экзотермическая реакция.