
- •1. Значение автоматического управления для развития химической промышленности на современном этапе
- •2. Краткий очерк истории развития систем автоматического управления
- •3. Особенности управления химико-технологическим процессом
- •4. Технико-экономический эффект управления. Роль управления в обеспечении безопасности химического производства и охраны окружающей среды
- •1. Понятие асутп.
- •2. Структура и функции асутп.
- •Классы микропроцессорных комплексов
- •1. Основные термины и определения
- •1. Иерархия управления. Назначение систем управления химическим предприятием и химико-технологическим процессом
- •2. Принципы управления
- •2.1. Управление по задающему воздействию
- •2.3. Управление по возмущающему воздействию
- •2.4. Управление по отклонению
- •2.5. Комбинированное управление
- •3. Классификация систем управления
- •3.1. По характеру изменения задающего воздействия
- •3.2. По числу контуров
- •3.3. По числу управляемых величин
- •3.4. По характеру управляющих воздействий
- •3.5. По виду зависимости установившейся ошибки от внешнего воздействия
- •3.6. По энергетическим признакам
- •3.7. По математическому описанию
- •4. Функциональная структура сар
- •1. Государственная система промышленных приборов и средств автоматизации
- •2. Основные термины и определения метрологии
- •2.1. Физические величины
- •2.2. Единицы физических величин
- •2.3. Измерения физических величин
- •2.4. Средства измерительной техники
- •2.5. Принципы, методы и методики измерений
- •2.6. Условия измерений
- •2.7. Результаты измерений физических величин
- •2.8. Погрешности измерений
- •4. Измерительные преобразователи
- •4.1. Структура измерительного преобразователя
- •4.3. Промежуточные преобразователи
- •4.3.3. Пьезоэлектрические преобразователи
- •4.3.4. Индуктивные преобразователи
- •4.3.5. Преобразователи электрических сигналов
- •4.4.3. Электропневматический преобразователь
- •4.4.4. Токовый унифицированный преобразователь
- •4.4.5. Пневматический унифицированный преобразователь
- •4.5. Аналоговые и цифровые преобразователи
- •6. Измерение давления
- •6.1. Жидкостные манометры
- •6.2. Деформационные преобразователи давления
- •7. Измерение температуры
- •7.1. Общие сведения об измерении температуры
- •7.2. Измерение температуры контактным методом
- •7.2.1. Термометры расширения
- •7.2.2. Манометрические термометры
- •7.2.3. Термоэлектрические преобразователи
- •7.2.5. Пьезоэлектрические термопреобразователи
- •7.3. Измерение температуры бесконтактным методом
- •7.3.2. Яркостные пирометры
- •7.3.3. Пирометры спектрального отношения
- •7.3.4. Пирометры полного излучения
- •8. Измерение расхода
- •8.1. Расходомеры переменного перепада давления
- •8.1.1. Измерение расхода по перепаду давлений на сужающем устройстве
- •8.1.2. Измерение расхода с помощью напорных трубок
- •8.2. Расходомеры постоянного перепада давления
- •8.3. Объемные расходомеры и счетчики
- •8.3.1. Счетчики с овальными шестернями
- •8.3.2. Ротационные счетчики
- •8.3.3. Скоростные счетчики
- •8.4. Измерение расхода на основе тепловых явлений
- •8.4.2. Термоконвективные расходомеры
- •8.4.3. Термоанемометры
- •8.5. Электромагнитные расходомеры
- •8.6. Вихревые расходомеры
- •8.7. Ультразвуковые расходомеры
- •8.8. Кориолисовы расходомеры
- •9. Измерение уровня жидкости и сыпучих тел
- •9.1. Механические уровнемеры
- •9.2. Гидростатические и пьезометрические уровнемеры
- •9.3. Кондуктометрические уровнемеры
- •9.4. Емкостные уровнемеры
- •9.5. Фотоэлектрические уровнемеры
- •9.6. Ультразвуковые уровнемеры
- •9.7. Измерение уровня с помощью радиоактивных изотопов
- •9.8. Акустические уровнемеры
- •10. Измерение состава и физико-химических свойств веществ
- •10.1. Физические газоанализаторы
- •10.1.2. Термохимические газоанализаторы
- •10.2. Измерение концентрации растворов
- •10.2.3. Денсиметрические анализаторы
- •10.2.4. Ультразвуковые анализаторы
- •10.3. Химические газовые сенсоры
- •1. Объекты управления и их основные свойства
- •1.1. Классификация объектов управления
- •1.1.1. Одномерные и многомерные объекты
- •1.1.2. Односвязные и многосвязные объекты
- •1.1.3. Линейные и нелинейные объекты
- •1.1.4. Объекты с сосредоточенными и распределенными параметрами
- •1.2. Свойства объектов управления
- •1.2.1. Емкость
- •1.2.2. Самовыравнивание
- •1.2.3. Запаздывание Транспортное запаздывание
- •2. Задачи синтеза регуляторов
- •3. Основные законы регулирования
- •3.1. Пропорциональный закон регулирования
- •3.2. Интегральный закон регулирования
- •3.3. Пропорционально-интегральный закон регулирования
- •3.4. Пропорционально-дифференциальный закон регулирования
- •3.5. Пропорционально-интегрально-дифференциальный закон регулирования
- •3.6. Позиционные регуляторы
- •3.6.1. Двухпозиционные регуляторы
- •3.6.2. Трехпозиционные регуляторы
- •1.1. Регулирование основных технологических параметров
- •1.1.1. Регулирование расхода
- •1.1.2. Регулирование устройств для перемещения жидкостей и газов
- •1.1.3. Регулирование уровня
- •1.2. Регулирование типовых тепловых процессов
- •3. Технические средства систем автоматического управления
- •3.1. Основные разновидности управляющих устройств, применяемых в системах управления хтп
- •3.2. Автоматические регуляторы прямого и непрямого действия
- •3.2.1. Регуляторы прямого действия
- •3.2.2. Регуляторы непрямого действия
- •3.4. Исполнительные устройства
- •3.4.3. Пьезокерамические исполнительные устройства
4. Измерительные преобразователи
Измерительное преобразование играет крайне важную роль в процессах измерения и может осуществляться многочисленными способами. Хотя входные сигналы измерительных преобразователей весьма разнообразны, число физических величин, применимых в качестве выходных сигналов, ограничено.
Преобразование основано на физических и физико-химических явлениях, определяющих зависимость между входными и выходными сигналами измерительных преобразователей. В настоящее время применяется большое число измерительных преобразователей различных принципов действия: емкостный, пьезоэлектрический, тензорезистивный, потенциометрический, термисторный, эффекты Холла, Кориолиса и др.
Замечание
Наиболее широко используется около тридцати традиционных физических явлений и эффектов, на основе которых сконструированы датчики. В результате разработки новых методов усиления сигналов расширяется выбор физических эффектов. Расширение номенклатуры материалов открывает новые возможности преобразования физических величин. Известно более 400 физических явлений, которые можно положить в основу создания новых средств измерений. Быстрое развитие полупроводниковой электроники часто изменяет подход к построению измерительных преобразователей.
Измерительные преобразователи разделяются также по виду энергии (механическая 1, электрическая 2, магнитная 3, тепловая 4, энергия излучения 5, химическая 6). На рис. 11 представлены возможные комбинации входного (или измеряемого) сигнала, выходного сигнала и сигнала возбуждения для различных типов преобразователей.
Классификация преобразователей может быть выполнена также и по их практическому применению (рис. 12). Измерительные преобразователи, используемые в каждой конкретной области, например для измерения давления, температуры, расхода и т. д., рассматриваются в соответствующих разделах этой главы.
Рис. 11. Схема к классификации измерительных преобразователей по виду преобразованной энергии
Измерительные преобразователи — основные элементы, определяющие качество и стоимость информационно-измерительных и, следовательно, управляющих систем. Можно привести следующие ориентировочные данные:
измерительные преобразователи (датчики) — 40 % общей стоимости;
устройства обработки данных — 20 % общей стоимости;
устройства регистрации, отображения — 40 % общей стоимости.
Рис. 12. Классификация первичных измерительных преобразователей (датчиков) по виду измеряемой величины
Современный этап развития этой области техники характеризуется разработкой многофункциональных интеллектуальных датчиков, обеспечивающих высокую точность, надежность, длительный срок службы.
Под интеллектуальным датчиком следует понимать датчик со встроенным микроконтроллером (своего рода — «интеллектом»). Интеллектуальный датчик имеет связь с системой управления, посылает ей не только измерительную информацию, но и результаты самодиагностики, информацию о сбоях, меняет свое метрологическое состояние по указанию «центра» и выполняет другие внешние и внутренние функции.
Интеллектуальный датчик содержит следующие основные компоненты: прецизионный усилитель с регулируемым коэффициентом усиления, высокоточный АЦП и микроконтроллер. Естественно, что для подключения интеллектуального датчика к сети сбора информации, в датчике должно быть предусмотрено средство, поддерживающее протокол обмена данными согласно какому-либо сетевому стандарту. Для обеспечения малого энергопотребления, низкой стоимости, высокой надежности интеллектуального датчика все его компоненты должны быть интегрированы на одном кристалле.