- •Введение
- •Общие Рекомендации
- •Порядок действий в лаборатории и Методика измерений
- •Обработка результатов измерений
- •1. Правила действий с приближёнными числами
- •2. Погрешности измерений
- •3. Практическая методика статистической обработки результатов измерений
- •4. Погрешности косвенных измерений
- •5. Графическая обработка результатов измерений
- •6. Определение параметров функциональных зависимостей по их графикам
- •Контрольные вопросы
- •Цикл 1. Механика, молекулярная физика и термодинамика
- •С помощью маятника обербека
- •Теория метода и описание установки
- •Задание 1. Определение момента инерции и момента силы трения
- •Выполнение измерений
- •Анализ и обработка результатов измерений
- •Задание 2. Проверка закона сохранения энергии
- •Выполнение задания
- •Контрольные вопросы
- •Работа № 2. Определение коэффициента упругости пружины
- •Теория метода и описание установки
- •Определение коэффициента упругости пружины динамическим методом
- •Выполнение измерений
- •Анализ и обработка результатов измерений
- •Контрольные вопросы
- •Работа № 3. Определение показателя адиабаты методом клемана – дезорма
- •Теория метода и описание установки
- •Задание 1. Определение показателя адиабаты атмосферного воздуха с учётом теплообмена
- •Анализ и обработка результатов измерений
- •Контрольные вопросы
- •Работа № 4. Определение вязкости жидкости по методу стокса
- •Теория метода и описание установки
- •Выполнение измерений
- •Анализ и обработка результатов измерений
- •Контрольные вопросы
- •Цикл 2. Электричество и магнетизм
- •Работа № 5. Исследование электростатического поля
- •Краткая теория
- •Выполнение работы
- •Анализ и обработка результатов измерений
- •Контрольные вопросы
- •Работа № 6. Определение температурного коэффициента сопротивления металла и энергии активации полупроводника
- •Теория метода
- •Выполнение работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Работа № 7. Определение горизонтальной составляющей индукции магнитного поля земли
- •Теория метода и описание установки
- •Выполнение работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Работа № 8. Изучение эффекта холла в полупроводниках
- •Краткая теория
- •Способ определения коэффициента Холла
- •Выполнение работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Описание установки
- •Длины волны излучения лазера
- •Анализ и обработка результатов измерений
- •Контрольные вопросы
- •Работа № 10. Изучение поляризации света
- •Краткая теория
- •Описание установки
- •Выполнение работы
- •Анализ и обработка результатов измерений
- •Контрольные вопросы
- •Работа № 11. Градуировка монохроматора.
- •Краткая теория
- •Описание установки
- •В ыполнение работы
- •Анализ и обработка результатов измерений
- •Контрольные вопросы
- •Работа № 12. Изучение законов внешнего фотоэффекта
- •Краткая теория
- •Описание установки
- •Выполнение измерений Задание 1. Снятие вольтамперной характеристики фотоэлемента
- •Задание 2. Изучение зависимости запирающего напряжения от частоты света
- •Анализ и обработка результатов измерений
- •Контрольные вопросы
- •Приложения
- •Содержание отчёта по лабораторной работе
- •Справочные данные
- •Диэлектрические проницаемости веществ
- •Удельные сопротивления ρ (ом×мм2/м или 10–6 ом×м; для растворов ом×см или 10–2 ом×м)
- •Единицы измерения световых величин
- •Основные цвета спектра и соответствующие им длины волн [4]
- •Длины волн спектральных линий некоторых газов, нм [5]
- •Приставки для образования кратных и дольных единиц
- •Библиографический список
- •Оглавление
Определение коэффициента упругости пружины динамическим методом
Этот метод основан на законах колебательного движения груза массой m около положения равновесия. Основной признак колебательного движения – периодичность. Следовательно, смещение x груза из положения равновесия можно записать в виде периодической функции времени:
x = Acos(t + 0), |
(2.2) |
где A – амплитуда; = 2/T – циклическая частота, обратно пропорциональная периоду T колебаний; 0 – начальная фаза колебаний.
При смещении x величина силы упругости будет определяться полным удлинением пружины, равным сумме l и x (см. рис. 2.1):
Fyпр = k(l + x). |
(2.3) |
Здесь l – удлинение пружины под действием покоящегося груза:
|
(2.4) |
Записав второй закон Ньютона (2.1) в проекциях на ось x (см. рис. 2.1) и учтя выражения (2.3) и (2.4), нетрудно получить дифференциальное уравнение свободных колебаний подвешенного на пружине тела:
|
(2.5) |
где
ax
– проекция
ускорения груза на ось х.
После подстановки
значений
и x
в уравнение
(2.5) получим
m2 = k. |
(2.6) |
Зная циклическую
частоту колебаний
и колеблющуюся массу m,
можно определить значение коэффициента
упругости
.
Так как непосредственно измеряется
время, то лучше связать коэффициент
упругости не с частотой, а с периодом
колебаний. Нетрудно показать, что квадрат
периода колебаний груза на пружине
прямо пропорционален его массе и обратно
пропорционален коэффициенту упругости
пружины:
|
(2.7) |
Из последнего равенства видно, что период определяется только свойствами системы (m и k) и не зависит от амплитуды колебаний.
Уравнение (2.7) позволяет графически обработать результаты измерений периода: откладывая по осям соответствующие переменные, можно свести равенство (2.7) к виду y = c + bx и получить при построении графика прямую, по угловому коэффициенту которой можно найти коэффициент упругости k. Подумайте, что следует принять за y, за х, за b, чтобы свести уравнение (2.7) к указанной линейной зависимости.
Выполнение измерений
Поместите на подвеску все 5 грузов, запишите в табл. 2.1 их общую массу с учетом массы подвески.
Нажимая двумя пальцами на верхнюю плоскость груза, оттяните его на любую величину А < l вниз и быстро уберите пальцы вверх.
Таблица 2.1
Запишите значение N и измерьте время t, за которое груз сделает N полных колебаний, запишите его в табл. 2.1. Измерения времени с каждым грузом нужно проделать по 3 раза, изменяя число колебаний. Например, N1 = 12, N2 = 20, N3 = 28, или 10, 15, 20 колебаний (по указанию преподавателя).№ п.п.
m
N
t
T
T
T 2
1
…
…
…
…
…
…
…
…
…
…
…
…
5
…
…
…
…
…
…
…
…
…
…
…
…
Подсказка: чтобы сделать три замера, достаточно запустить колебания один раз, потому что период колебаний не зависит от амплитуды, которая постепенно уменьшается вследствие затухания колебаний.
Снимите верхний груз и проведите такие же измерения, сохраняя выбранные значения числа колебаний.
Снимите ещё один груз, проведите измерения с тремя оставшимися, затем с двумя и, наконец, с одним, самым тяжёлым грузом. Все показания секундомера и массы грузов запишите в табл. 2.1.
