
- •1. Методология проектирования.
- •2. Процедурная модель проектирования.
- •3. Виды и стадии разработки изделий и состав технической документации.
- •4. Методы разработки новых машин
- •5. Показатели качества промышленной продукции.
- •6. Методы оценки технического уровня и качества промышленной продукции
- •Показатели назначения спуско-подъемного комплекса буровых установок
- •8.Методы расчета бурового оборудования на прочность.
- •9.Прочность при статическом нагружении
- •10. Вероятность разрушения при статическом нагружении
- •11.Расчет на прочность при переменном нагружении
- •12. Расчет подшипников качения узлов буровой установки на долговечность
- •13. Надежность бурового оборудования
- •13.1 Показатели безотказности бурового оборудования
- •13.2. Показатели долговечности нефтепромыслового оборудования
- •14.Методы повышения надежности бурового оборудования
- •15. Структурный анализ схем бурового оборудования
- •16. Функциональный анализ схем бурового оборудования
- •17. Общие требования к кинематической схеме буровой установки
- •18. Разработка кинематических схем буровых установок
- •19.1 Выбор и обоснование критериев оптимизации при проектировании бурового оборудования.
- •19.2. Выбор и обоснование критериев оптимизации при проектировании машин и оборудования нефтяных и газовых промыслов. Выбор критерия вы можете взять в ответе на 19 вопрос
- •20. Оптимизация конструктивных решений
- •21. Применение компьютерной техники при разработке конструкторской и технологической документации.
- •22. Критерии работоспособности несущих элементов бурового оборудования.
- •23. Алгоритм расчета долговечности основной опоры ротора
- •24. Методика расчета фланцевых соединений
- •1.1.1 Проверочный прочностной расчет
- •1.1.2 Прочностной расчет деталей фланцевого соединения
- •1.2 Конструкторский проектировочный расчет фланцевых соединений фонтанной арматуры
- •1.2.1 Расчет толщины тарелки фланца
- •1.2.2 Расчет шпилек на прочность
- •1.2.3 Расчет цилиндрической части
- •1.2.4 Определение прочности прокладки
- •25. Методика расчета основных параметров привода станка-качалки
- •26. Определение осевых и радиальных усилий, возникающих при работе эцн для добычи нефти
- •27. Расчет оптимальной величины нагрузки на уплотнительные элементе пакеров с механическим управлением
- •28. Расчет нкт
- •29. Влияние условий эксплуатации бурового и эксплуатационного нефтяного и газового оборудования на подбор материала деталей и выбор предельных напряжений.
- •30. Показатели материалоемкости и жесткости конструкций.
- •Показатели жесткости конструкций
19.2. Выбор и обоснование критериев оптимизации при проектировании машин и оборудования нефтяных и газовых промыслов. Выбор критерия вы можете взять в ответе на 19 вопрос
В практике конструирования бурового оборудования все шире применяют электронные цифровые вычислительные машины (ЭЦВМ), значительно ускоряющие процесс разработки новых конструкций. При этом ЭЦВМ используют в зависимости от их типа, возможностей проектной организации и тех целей, которые она перед собой ставит.
В настоящее время представляется возможным выделить четыре группы задач, которые целесообразно решать с помощью ЭЦВМ, а именно:
1) многовариантные оптимизационные расчеты, т. е. расчеты по сложным формулам, когда требуется получение более точных результатов, чем это можно получить при «ручных» расчетах по приближенным формулам;
2) проверочные расчеты деталей и сборочных единиц, которые могут выполняться также без применения ЭЦВМ, но применение машин экономит время;
3) проверочные и проектировочные расчеты по специально разработанным методикам;
4) автоматизированные системы проектирования (САПР) бурового оборудования.
Вторая и третья группы задач решаются во многих организациях. Первая группа задач более сложная и доступна гораздо меньшему кругу организаций. Работы по автоматическому проектированию бурового оборудования начаты в специализированных организациях. Например, разработана система автоматического проектирования буровых долот. Проверочные расчеты деталей и сборочных единиц по существующим методам с использованием ЭЦВМ применяют довольно широко и используют готовые отработанные методики; составление по ним программ не представляет большой трудности. Однако практика показала, что во многих случаях программы громоздки и неэффективны, так как они требуют высокой степени формализации всех понятий и операций.
Первая и третья группы задач могут рассматриваться как ступени, ведущие к довольно перспективному машинному проектированию. Методики проверочных и проектировочных расчетов характеризуются большой общностью, что позволяет по одной программе рассчитывать конструкции одного класса. Современные ЭЦВМ открывают большие перспективы для оптимизации технических решений и позволяют использовать математическую теорию планирования эксперимента, в результате чего можно получить необходимые экспериментальные данные с минимальными затратами средств и времени при исследовании сложных технических систем.
Если программы предполагают использовать в САПР, то должна быть предусмотрена возможность их «стыковки», чтобы можно было рассчитывать и оптимизировать сложные конструкции, включающие различные сборки. При машинном проектировании невозможно заранее предусмотреть все варианты поиска оптимального решения. В связи с этим важную роль приобретает режим диалога человек - машина.
ЭЦВМ выдает на дисплей или в печать ту или иную информацию, а человек после ее анализа вводит дополнительные данные и определяет направление дальнейшего решения. После этого машина вновь считает слабое сечение и т. д. Режим диалога можно использовать при определении параметров подъемного механизма буровой установки. Следует иметь в виду, что применение ЭЦВМ может дать значительный эффект, так как позволяет ускорить проектирование в 7--10 раз и повысить качество проекта за счет выбора оптимального варианта. При «ручном» проектировании сложных конструкций затраты на выбор оптимального решения растут с увеличением сложности конструкций.