
- •Міністерство освіти і науки, молоді та спорту україни
- •Методичні рекомендації до практичних занять
- •Вступ до методичних рекомендацій
- •Unit I.
- •Introduction to chemistry.
- •I. Language.
- •II Reading
- •Тext a “The science of chemistry”
- •III Language.
- •IV. Comprehension
- •V. Oral speech
- •VI. Reading and comprehension.
- •Тext b. Fields of chemistry
- •VII. Reading and comprehension.
- •Text c “States of matter and its molecular and atomic constitution”
- •Text e. The fundamental particles
- •Text f. Energy
- •Text g. Nuclear chemistry
- •Text h. Organometallic compounds
- •Text I. Photochemistry
- •Text j. Problems of chemistry
- •Unit II. Famous chemists and their achievements
- •I. Language
- •II. Reading.
- •D.I.Mendeleyev
- •III . Language.
- •IV. Comprehension.
- •V. Oral practice
- •Text b
- •Vladimir Ivanovich Vernadsky
- •VI. Reading.
- •Supplementary reading. Text d.
- •Text e Alexander Porfiryevich Borodin
- •Text g. Antoine lavoisier
- •Text h .Karl wilhelm scheele (1742-1786, Sweden)
- •Text I .Sir william crookes (1832-1919, GreatBritain)
- •Text j . Niels henrik david bohr (1885-1962, Denmark)
- •Unit III. Liquids
- •I. Language.
- •II.Reading.
- •Text a Liquids
- •III.Language.
- •IV. Comprehension.
- •V. Oral practice
- •VI. Reading and comprehension.
- •Text b Water purification
- •Text с how many waters are there on earth?
- •Supplementary reading Text d. Some facts about water
- •Text e. So simple and yet so wonderful
- •Unit IV gases
- •I. Language.
- •II. Reading.
- •Text a oxygen
- •III. Language.
- •IV. Comprehension.
- •V. Oral practice.
- •VI. Reading and comprehension.
- •Text b. How many hydrogens are there on earth?
- •VII. Oral practice.
- •VIII. Reading
- •Supplementary reading Text d. The story of oxygen
- •The Work of Priestley
- •The Liebig Condenser
- •Oxygen - Breathing Stimulant
- •Lime-water Test
- •Industrial Production of Oxygen
- •Text e . Gases
- •Unit V. Polymeric materials.
- •I. Language.
- •II. Reading.
- •The nature of polymeric materials
- •III. Language.
- •IV.Comprehension.
- •V.Oral practice.
- •VI. Reading and comprehension.
- •Text b.
- •Text c.
- •Supplementary reading Text d .The polymer industry
- •Text e .Plastic glasses
- •Text f . Nylon
- •Text g. The carbon cycle
- •Unit VI petroleum
- •I. Language
- •Exercise 2. Give the initial form of the words and translate them:
- •Exercise 3. Fill in the table the given words.
- •Exercise 4. Form the antonomic pairs.
- •Exercise 5. Find the synonymic pairs.
- •Exercise 6. Translate the following word combinations.
- •II.Reading.
- •Physical properties of petroleum
- •III. Language.
- •Exercise 10. Substitute Ukrainian words for English ones given below : .
- •Exercise 11.Form the degrees of comparison of the following adjectives.
- •Exercise 12.Translate the sentences with the comparative constructions.
- •Exercise 14 .Find definitions to the words in the text:
- •IV. Oral practice
- •V .Reading and Comprehension.
- •Exercise 19. Answer the following questions .
- •Exercise 20. Agree or disagree with the following sentences .
- •VI. Reading and сomprehension. Exercise 22. Read the text c without a dictionary for 4 min. And answer the following questions in your native language.
- •1.What origin has petroleum?
- •Text c “The origin of petroleum”
- •Unit VII
- •I.Language.
- •II.Reading.
- •Text a Air Pollution
- •III. Language.
- •IV. Comprehension.
- •V. Oral Practice.
- •VI. Reading and Comprehension.
- •Text b Man and his environment
- •VII. Oral Practice.
- •Supplementary reading text c man protects his environment
- •Text d . Environment Protection Must Be Global
- •Unit VIII my future speciality
- •I. Language.
- •II. Reading.
- •Text a. My Speciality
- •III. Oral Practice.
- •IV. Reading.
- •V. Comprehension.
- •VII. Oral Practice.
- •VIII. Reading.
- •Inorganic chemistry
- •Supplementary reading Text d
- •Industrial inorganic chemistry
- •Test e Main group compounds
- •Text f Theoretical inorganic chemistry
- •Text g Characterization of inorganic compounds
- •Text h Synthetic inorganic chemistry
- •Додаток найуживаніші суфікси та префікси
- •Використана література
Text g Characterization of inorganic compounds
Because of the diverse range of elements and the correspondingly diverse properties of the resulting derivatives, inorganic chemistry is closely associated with many methods of analysis. Older methods tended to examine bulk properties such as the electrical conductivity of solutions, melting points, solubility, and acidity. With the advent of quantum theory and the corresponding expansion of electronic apparatus, new tools have been introduced to probe the electronic properties of inorganic molecules and solids. Often these measurements provide insights relevant to theoretical models. For example, measurements on the photoelectron spectrum of methane demonstrated that describing the bonding by the two-center, two-electron bonds predicted between the carbon and hydrogen using Valence Bond Theory is not appropriate for describing ionisation processes in a simple way. Such insights led to the popularization of molecular orbital theory as fully delocalised orbitals are a more appropriate simple description of electron removal and electron excitation.
Commonly encountered techniques are:
X-ray crystallography: This technique allows for the 3D determination of molecular structures.
Dual polarisation interferometer: This technique measures the conformation and conformational change of molecules.
Various forms of spectroscopy
Ultraviolet-visible spectroscopy: Historically, this has been an important tool, since many inorganic compounds are strongly colored
NMR spectroscopy: Besides 1H and 13C many other "good" NMR nuclei (e.g. 11B, 19F, 31P, and 195Pt) give important information on compound properties and structure. Also the NMR of paramagnetic species can result in important structural information. Proton NMR is also important because the light hydrogen nucleus is not easily detected by X-ray crystallography.
Infrared spectroscopy: Mostly for absorptions from carbonyl ligands
Electron nuclear double resonance (ENDOR) spectroscopy
M?ssbauer spectroscopy
Electron-spin resonance: ESR (or EPR) allows for the measurement of the environment of paramagnetic metal centres.
Electrochemistry: Cyclic voltammetry and related techniques probe the redox characteristics of compounds.
Text h Synthetic inorganic chemistry
Although some inorganic species can be obtained in pure form from nature, most are synthesized in chemical plants and in the laboratory.
Inorganic synthetic methods can be classified roughly according the volatility or solubility of the component reactants.[9] Soluble inorganic compounds are prepared using methods of organic synthesis. For metal-containing compounds that are reactive toward air, Schlenk line and glove box techniques are followed. Volatile compounds and gases are manipulated in “vacuum manifolds” consisting of glass piping interconnected through valves, the entirety of which can be evacuated to 0.001 mm Hg or less. Compounds are condensed using liquid nitrogen (b.p. 78K) or other cryogens. Solids are typically prepared using tube furnaces, the reactants and products being sealed in containers, often made of fused silica (amorphous SiO2) but sometimes more specialized materials such as welded Ta tubes or Pt “boats”. Products and reactants are transported between temperature zones to drive reactions.