
Импульсная калориметрия
Устранение потерь тепла при калориметрических измерениях достигается путем значительного усложнения конструкции калориметров и методики измерений. Возможен более простой способ уменьшения тепловых потерь. Если скорость нагрева резко увеличить, то длительность опыта можно сделать очень малой, что приведет к снижению тепловых потерь до пренебрежимой величины. На этом и основана импульсная калориметрия.
Рассмотрим определение скрытой энергии, накопленной при пластической деформации металла, дифференциальным импульсным методом. Через два одинаковых последовательно соединенных образца, один из которых отожжен, а другой деформирован, пропускают короткий импульс тока большой силы. Образцы представляют собой отрезки проволоки длиной 15...50 мм и диаметром 0,1...0,3 мм. Деформированный образец нагревается джоулевой теплотой и выделяющейся скрытой энергией пластической деформации. Отожженный образец, служащий эталоном, нагревается только джоулевой теплотой.
Во время опыта записывают с помощью магнитоэлектрического шлейфового осциллографа ток через образцы и падение напряжения на них. Зная температурный коэффициент сопротивления материала образцов, можно для любого момента времени рассчитать их температуры и количества сообщенной им теплоты, затем рассчитать теплоемкость в зависимости от времени и температуры. Это позволяет вычислить скрытую энергию деформации по уравнению.
Применение калориметрии
Калориметрические измерения позволяют полнее изучить сущность многих процессов, протекающих в металлических сплавах при их термической обработке. В качестве примера рассмотрим применение калориметрии для изучения распада мартенсита в углеродистых сталях и в безуглеродистых сплавах на железоникелевой основе.
Температурная зависимость кажущейся теплоемкости закаленных углеродистых сталей существенно зависит от содержания углерода в исходном мартенсите.
Снижению кажущейся теплоемкости Cp' соответствует выделение теплоты в образце вследствие протекания процессов отпуска. В высокоуглеродистой стали наблюдаются значительные тепловые эффекты - при 150 °С первая стадия отпуска и в интервале от 200 до 350 °С наложение эффектов второй стадии отпуска и распада остаточного аустенита. В низкоуглеродистой стали эффекты, связанные с первой стадией отпуска и распадом остаточного аустенита, отсутствуют. Предварительный отпуск при 250 °С резко уменьшает тепловыделение при последующем нагреве в калориметре высокоуглеродистой стали и мало сказывается на стали с 0,22 % С. При нагреве отпущенных сталей выделение теплоты в интервале от 250 до 385 °С мало зависит от содержания углерода в стали и близко к тепловому эффекту в неотпущенной низкоуглеродистой стали. Это свидетельствует о сохранении в а-растворе после отпуска при 250 °С около 0,2 % углерода.
В практически безуглеродистых сплавах Fe-Ni-Ti, Fe-Ni-Al мартенсит обладает невысокой твердостью. При нагреве таких закаленных сталей в область 300...600 °С твердость повышается, достигая максимума около 500 °С. Старение этих сталей обусловлено распадом мартенсита с образованием интерметаллидов. Калориметрические измерения показали, что старение сплава на основе Fe + 7,75 % Ni с алюминием происходит в две стадии, чему соответствуют два минимума на кривой Cp'(t). Кривая Cp'(t) сплава с титаном имеет три минимума, следовательно, старение этого сплава протекает в три стадии. При одновременном легировании железоникелевого сплава титаном и алюминием старение протекает в две стадии.
Отсутствие тепловых эффектов при повторных нагревах образцов означает, что процессы распада мартенсита полностью или почти полностью завершились при первом нагреве.
ыяснение механизма старения и природы выделяющихся фаз не может быть достигнуто только с помощью калориметрии. Для достижения этого необходимо привлечение других, прежде всего структурных, методов исследования.
Аномалии температурной зависимости теплоемкости наблюдаются и при магнитных превращениях, не сопровождающихся изменением кристаллической решетки. Эти аномалии проявляются в форме резкого пика теплоемкости в непосредственной близости к температуре Кюри, при которой ферромагнитные свойства исчезают и тело становится парамагнетиком. Отчетливо видна ферромагнитная аномалия теплоемкости в окрестности точки Кюри.